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PREFACE 
 

 
 
 The International Conference Selforganization in Nonequilibrium Systems is 
the first one from the Nonlinear Sciences in our country. The following topics in theo-
retical and applied aspects of Nonlinear Sciences are included: Dynamics of Nonlinear 
Processes, Oscillations and Chaos, Modeling of Selforganization Phenomena, Stability 
analysis, Stochastic Analysis, Transport Phenomena and Traveling Waves, Perturba-
tions of Nonlinear Systems, – all in physics, chemistry, physical chemistry, biochemis-
try, ecology and social sciences.  
 In the total of 44 Papers there are 8 Invited Lectures, and also 16 Contributed 
Talks and 20 Poster Presentations, both peer-reviewed.  
 We are grateful to the Ministry of Science and Environmental Protection of 
the Republic of Serbia, and to all other sponsors for their help. The editors extend their 
gratitude to the members of the International Scientific Committee and the colleagues 
who reviewed the supplied contributions. Thanks are also due to the colleagues who 
took part in the organization of the Symposium and in the preparation of the Book. 

 
It was pleasure to work on this book.  

  
 
September 2004 
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SELFORGANIZATION IN NONEQUILIBRIUM SYSTEMS  

SELF-ORGANISATION:  
FROM PHYSICS TO SOCIAL SYSTEMS 

P.M. Allen 
Complex Systems Management Centre, 

Cranfield University, Bedford, MK43 OAL, England 
 
 
Introduction  
Ideas that emerged in the natural sciences concerning initially self-organisation and 
pattern formation (Nicolis and Prigogine, 1977; Haken, 1977; Prigogine, 1981 and 
Prigogine and Stengers, 1987), provide us with a new basis for understanding both 
ecological and social systems as the results of evolutionary processes. In this paper we 
shall focus on the fundamental issue that means that our models and understanding of 
the world are necessarily incomplete once we move beyond the interaction of simple 
molecules. We shall explore the essence of “being” and “becoming”, and try to show 
that these are not just attractive phrases that publishers can put on popular science 
books to increase sales. It is a real issue and we shall try to show how becoming and 
being differ and what is the underlying explanation of this. In the first part we shall 
move from chemistry to ecology and demonstrate these ideas. Then in the next section 
we shall look at the application of these ideas to human systems and eventually to the 
issues of policy and decision making that concern us all.  
 

We shall also attempt to explain why a real, natural system is more than the sum of its 
parts, and the importance of emergent properties and attributes.  
 
Dissipative Structures - Models of Complexity  

As is well known today, in systems with some degree of strong coupling between its 
elements, when a critical level of thermodynamic disequilibrium is reached then many 
amazing and surprising things can happen. One of the earliest and most studied cases 
was the "Brusselator', because of the intensive study it has received by the group at 
Brussels.  
  

It consists of a simple, fixed, non-linear reaction mechanism,  
 
 

  (1) 

EX
XYX

DYXB
XA

⎯→⎯

⎯→⎯+

+⎯→⎯+

⎯→⎯

32 

 
where A and B feed the reaction, D and E are produced by it, and X and Y are inter-
mediates. Let us suppose further that X is red in colour, and Y is blue. The kinetic 
equations for this reaction scheme are very simple to write, and we assume that the 
products of reaction E and D are removed to avoid the occurrence of a back reaction:  
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  (2) 

 
 
As is well documented, under conditions of chemical disequilibrium All sorts of mov-
ing or stationary patterns can emerge. For example, if we stir the reaction, then at a 
certain critical reaction rate, instead of the system being uniform (a homogeneous mix-
ture of red and blue, of X and Y) it suddenly begins to oscillate steadily from all red to 
all blue and back, in a perfectly rhythmic manner. Even if perturbed momentarily, it 
will return to this particular, stable beat. The random, incoherent movements and reac-
tions of the molecules is abruptly transformed into disciplined, coherent, co-ordinated 
behaviour worthy of a good choir! In a system that is not stirred all sorts of spatial and 
spatio-temporal structures can appear spontaneously: from simple left/right inho-
mogeneities, to expanding spiral waves of various well defined dimensions, to moving 
or stationary bands of red and blue - a whole bundle of different possibilities.  

YXBX
dt
dy

XYXBXA
dt
dx

2

2

−=

−+−=

This process of self-organisation is a remarkable phenomenon that strikes at the 
heart of some of our deepest preconceptions concerning physical systems. For exam-
ple, if we take a particular spatial structure, then at the interface of "red" and "blue" 
there will clearly be fluxes of X and Y caused by the concentration gradients. Our 
normal reaction would be to say that they are "explained" by the "forces" that must 
exist between the zones. But in fact these forces themselves are generated by the spa-
tial structure of which the interface is a part, and which in turn reflects the fluxes that 
are occurring in the system. If, for example, the coefficient of diffusion were modified, 
or the temperature, then the spatial structure itself would change or perhaps even dis-
appear. In this sense, the "cause" of this particular structure is the precise values of the 
fluxes, which in their turn, according to our simple preconceptions, result from this 
structure. Clearly, the circularity of the apparent “causation" is showing up some 
weakness in our way of thinking about things.  

In reality, a "dissipative structure" is an entity that has as mutually dependent 
facets the flows and spatial structures that characterize it. Interference with one will 
modify both through a cascade of feedback processes. We see that we have a system 
that has created its own "boxes" and "arrows". Furthermore, we see that the "Model-
ler's Nightmare", i.e., the fact that complex systems evolve structurally (new boxes, 
new arrows) is quite clearly part of the behaviour of a dissipative structure. A particu-
lar type of behaviour, homogeneous temporal oscillation, moving parallel bands, etc. 
can spontaneously change to a qualitatively different one. If we had been rash enough 
to model the system on the basis of its particular macro-behaviour at the earlier time, 
then suddenly our model would fail to describe what was occurring.  

Also, we come upon the dilemma that faces any ecologist trying to understand the 
system before him. We can "track" the energy flow in the Brusselator, or make balance 
equations (accountancy) for particular materials (carbon, nitrogen etc.); but these always 
only indicate or reflect the structure that had appeared in the system, and do not explain 
it, nor predict when some new structure may emerge. The "explanation" behind a par-
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ticular “structure/flow" pattern lies in the history of instabilities it has traversed, and es-
pecially in the stability or instability of the structure at the moment we are observing it.  

What is new, and important, is that different solution branches can emerge 
which are qualitatively different from each other. We have, therefore, a non-
conservation of symmetry, and hence of the number and nature of the "qualities" 
which characterize the system. In one stride we have moved from the relative banality 
of simple arithmetic to the quantitative modelling of morphogenetic processes 
whereby structure and function emerge, where the qualitative differences of the living 
world appear, and in which we find creation instead of conservation.  

Evolution represents a dialogue between the real, rich micro-detail of the sys-
tem, and the simpler deterministic average behaviour that we have considered to be 
adequate to represent it.  
 
Evolving Ecologies Evolving  

Can we extend the ideas and modelling methods from chemical kinetics – the popula-
tion dynamics of reacting molecules – to ecologies? What differences would exist be-
tween chemical kinetics and population dynamics of real populations? If so, then can 
the lessons of self-organisation be transferred to ecologies, and from there to social 
systems. Let us consider this by taking the following example. Consider an ecosystem, 
and let us attempt to model it using population dynamics. We can establish the differ-
ent species that exist there, and then find out how many of each population there are. 
We can also, by sampling, find out which population eats which other population and 
calibrate the multiple plant/herbivore and predator/prey interactions. Now, once this is 
established, we can put the whole system of equations on a computer, and run it for-
ward. What happens is shown in figure (1).    

This is an astonishing result. It means that although the model was calibrated on 
what was happening at time t = 0 it diverged from reality as time moved forward. The 
real ecosystem stayed complex, and indeed continued to adapt and change with its real 
environment. But this shows us that the mechanical representation of reality differs 
critically from that reality.  

What is missing? This can be discovered if we examine carefully the assump-
tions that we made in formulating our population dynamics. Although it worked for 
chemistry – it didn’t work for ecology.  

What happened is that the loops interactions of a real ecosystem form parallel 
food chains, with cross connections and complications of course, but essentially with 
each level feeding on the lower one, some of these dying and others being eaten by the 
level above. The whole system of food chains loops back through death and micro-
organisms that recycle all the carbon and minerals. When we run the population dy-
namics with the fixed birth, death capture and escape rates that we have found on av-
erage in the real system (in analogy with chemical reaction rates), then the food chain 
with the highest performance simply eliminates all the others. In other words, selec-
tion between metabolic chains operates and this selects for the highest performing 
chain. However, reality does not. Therefore we need to understand what is missing 
between the dynamic model and the original real system.  

 5
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Figure 1. A calibrated ecosystem represented by the population dynamics of its con-
stituent species collapses when run forward in time.  
 
The key answer is that what is missing is the internal diversity of the populations. In 
chemistry, one molecule is very like another, and the only difference is their spatial 
location. Dissipative structures can create spatio-temporal patterns because of this. But 
populations of organisms differ in an infinite number of ways. Firstly in location, but 
also in age, size, strength, speed, colour etc. and so this means that whenever a popula-
tion, X, is being decreased by the action of some particular predator or environmental 
change, then the individuals that are most vulnerable will be the ones that “go” first. 
Because of this the parameter representing the average death rate will actually change 
its value as the distribution within the population X increases the average “resistance”. 
In other words, the whole system of populations has built in through the internal diver-
sities of its populations, a multiple set of self-regulatory processes that will automati-
cally strengthen the weak, and weaken the strong. In the same way that reaction diffu-
sion systems in chemistry can create patterns in space and time, so in this more com-
plex system, the dynamics will create patterns in the different dimensions of diversity 
that the populations inhabit. But neither we, nor the populations concerned, need to 
know what these dimensions are. It just happens as a result of evolutionary dynamics.  

In this case it becomes key to understand the sequence of assumptions that take 
us from reality to a mechanical representation of that reality.  This leads us to the gen-
eral view that is shown in figure (2). This sets out the kind of models that result from a 
particular set of assumptions.  

This succession of models arises from making successive, simplifying assump-
tions, and therefore models on the right are increasingly easy to understand and pic-
ture, but increasingly far from reality. They also are shorn of their capacity to 
evolve – their real underlying exploratory, error-making processes. The operation 
of a mechanical system may be easy to understand but that simplicity has assumed 
away the more complex sources of its ability to adapt and change. They become more 
like “descriptions” of the system at a particular moment, but do not contain the magic 
ingredient of micro-diversity that will really allow the system to undergo structural 
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Figure 2. This shows the results of successive simplifying assumptions 
that take us from a complex evolving system to its mechanical representation. 
hange and create a new, qualitatively different system, with some new variables and 
ome emergent performance.The ability to adapt and change is still present in the “evo-
utionary” model that only makes assumptions 1 and 2, but not those of average type and 
verage behaviours. This therefore tells us that the evolutionary capacity is generated by 
he behaviours that are averaged by assumptions 3 and 4 – average types and average 
vents – and therefore that organisations or individuals that can adapt and transform 
hemselves, do so as a result of the generation of micro-diversity and the interactions 
ith micro-contextualities. This tells us the difference between a reality that is “becom-

ng” and our simplified understanding of this that is merely “being” (Prigogine 1981).  
All of this is fairly irrelevant for the chemistry of simple molecules, because a 

opulation does not have internal diversity, and so there is nothing for evolution to work 
n. However, as soon as we reach organic molecules, with complex polymers, and dif-
erent ways of folding, then we see that these same ideas apply and an evolutionary 
rocess becomes possible that makes the real system more than its mechanical represen-
ation. 

he Importance of Micro-Diversity 

et us now consider the workings of this “micro-diversity” and see how it both drives 
volution – and is also selected for by evolution. If consider the simplest possible 
quation for a population of organisms, it is the logistic equation. 
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 (1) 
mx

N
xbx

dt
dx

−−= )1( 
 

Now let us consider the effect in such a simple of “error making” at the level 
of reproduction of x. This would potentially produce different types of x, with dif-
ferent characteristics, and different parameters of birth and death.   

Let us consider a 1-dimensional “population character space” of different possi-
ble behaviours for the population x. If we consider that initially we have a single 
“pure” population type then it will sit on one particular behaviour, i. However, if there 
are any “errors” or “explorations” made in the reproduction of this behaviour, this will 
correspond to diffusion outwards in that space. 

1 1 1 1{( * * .5* (1 ) .5* (1 )}*(1 ) *i i
i i i i i i

dx xb x f b x f b x f m x
dt N+ + − −= + − + − − − i  

 

So, (1-f)xi flow from behaviour i to i+1 and i-1, while  
 .5*(1-f)νxi+1 and  
 .5*(1-f)νxi-1  

flow in from the neighbouring behaviours, where ν represents the fraction of explo-
rations that are simply non-viable. Figure (3) shows us what happens.    
 

 
 

Figure 3. In a space of possible behaviours random modifications will be lead the 
population to “climb” the hill. 

 

This experiment tells us that evolutionary progress – hill climbing - occurs as a 
result of processes that generate a “diffusion” in character space. Ignorance and error 
making are very robust sources of such exploration, but clearly random changes in the 
design of any complicated entity will mean that most experiments are simply non-
viable, and only half of those that remain are “better”. This effectively tells us that 
there is an “opportunity cost” to behavioural exploration, and that there will be some 
“best” amount of “exploration” in a given situation, at which the pay-offs found, mi-
nus the opportunity cost is a maximum.  

In a model with two competing populations with different degree of error mak-
ing, we find that initially the “explorer” (error-maker) climbs the hill faster and leaves 
the other behind, but later, when there is nothing left to discover, the exploiter (non-
error-maker) wins. Our model reveals to us a strategic reality – when we are in a new 
domain, and there is a lot to learn – then learning/exploration pays off. However, 
 

 

 8



SELFORGANIZATION IN NONEQUILIBRIUM SYSTEMS  

 

Figure 4. If we have two populations that have different rates of “exploration” then 
we find that the relative success changes from early exploration to late exploitation. 
 
when we are in a mature system that has already been thoroughly explored there is no 
point wasting effort on further exploration. Of course, we can only know the there are 
opportunities or not by actually engaging in exploration, but clearly, unless there is 
some structural change, the value of exploration falls with sector maturity, and this 
will lead exploration behaviour to switch to exploitation.  

In other words, the presence of populations with different levels of exploration 
and exploitation (error-making and accuracy) will automatically lead to evolution se-
lecting whichever is most appropriate. So, evolution will be driven by the amount of 
diversity generation to which it leads. Evolution selects for an appropriate capacity to 
evolve.  

Another important point made here is that it shows us how the micro-diversity 
that is constantly generated at a low level in a system, leads to the evolution of struc-
ture, organisation and diversity, characterised by the development through a “life cy-
cle” of any new domain – exploring and rapidly expanding in as new domain and 
gradually filling and saturating as a mature stage is reached.   
 
Modelling Human Systems 
These ideas can now be transferred to human systems. Behaviours, practices, routines 
and technologies are invented, learned and transmitted over time between successive 
actors and firms, so that evolutionary processes arise in exactly the same way.   

5.1 A Fisheries Example 
In this example we refer to a detailed model that was developed of Canadian Atlantic 
fisheries (Allen and McGlade, 1987). This is a spatial model that generates the move-
ment of fishermen, based on the information they have concerning fish abundances, 
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and the "expected revenue" that could be obtained from fishing a particular zone. This 
information comes from the fishing activity of other boats, and therefore there is a 
tendency for the pattern of fishing to structure spatially because high catches result in 
a concentration of effort and, in consequence, high catches in that zone. Areas where 
fishing boats are absent send no information about potential catch and revenue. This 
provides a spatial positive feedback mechanism that structures fishing patterns.  

The model describes how boats are attracted to zones in which they know high 
catches and catch rates are occurring, but of course, they only know this if there is 
communication between the boats in i and in j.  This will depend on the "information 
exchange" matrix, which will express whether there is cooperation, spying or indiffer-
ence within and between fleets.  However, in deciding which zone to go to, fishermen 
take into account the distances involved to go there, and to return to port and the cost 
of fuel. 

In addition to these effects, however, our equation takes another very important 
factor into account.  This factor R expresses how "rationally", how "homogeneously" 
or with what probability a particular skipper will respond to the information he is re-
ceiving. For example, if R is small, then whatever the "real" attraction of a zone i, the 
probability of going to any zone is roughly the same.  In other words, "information" is 
largely disregarded, and movement is "random".  We have called this type of skipper a 
stochast.  Alternatively is R is large, then it means that even the smallest difference in 
the attraction of several zones will result in every skipper of that fleet going, with 
probability 1, to the most attractive zone. In other words, such deciders put complete 
faith in the information they have, and do not "risk" moving outside of what they 
know.  These "ultra rationalists" we have called Cartesians. The movement of the 
boats around the system is generated by the difference at a given time between the 
number of boats that would like to be in the each zone, compared to the number that 
actually are there. As the boats congregate in particular locations of high catch, so they 
fish out the fish population that originally attracted them. They must then move on the 
next zone that attracts them, and in this way there is a continuing dynamic evolution of 
fish populations and of the pattern of fishing effort. 

This is a remarkable result. The higher the value of R, the better the fleet opti-
mizes its use of information and in the short-term increases profits. But, this does not 
necessarily succeed in the long term. After leaving the port and locating a first fish 
aggregate, they "lock on" to this zone and stay fishing there for too long, because it is 
the only information available. These Cartesians are not “risk-takers” and will not 
go out to zones with no information, and hence they get “locked in” to the existing 
pattern of fishing. The Stochasts (R=.5), providing that they are not totally random (R 
<.1) succeed in both discovering new zones with fish stocks, and also in exploiting 
those that they have already located.  

This paradoxical situation results from the fact that in order to fish effectively, 
two distinct phases that must be accomplished. First the fish must be "discovered".  
This requires spatial diversity and risk taking by those willing to go into the "un-
known" and explore, whatever present knowledge is. The second phase, however, re-
quires that when a concentration of fish have been discovered, then the fleet will move 
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igure 5. After 20 years with fleet 1 defeats 2 by having less rationality. R = .5 

for fleet 1 and R = 3 for fleet 2. 
assively to exploit this, the most profitable location.  These two facets are both 
essary, but call on different qualities. 

The simulation system can be used to explore which behavioural strategies 
k for different fleets and examine how the pattern of fishing results from a process 
patial self-organization, which needs to “fit” the patterns of fish stocks, and of 
r decline under fishing, and recovery when fishing pressure relaxes. Let us briefly 
marize the pattern of behaviours that could evolve in a fishery as the result of ex-
mentation among fishermen.  
Fleets find a moderate behaviour with rationality between .5 and 1 
Cartesians try to use the information generated by Stochasts, by following them, 
and by listening in to their communications.  
Stochasts attempt to conceal their knowledge, by communicating in code, by sail-
ing out at night, and by providing misleading information. 
Stochasts and Cartesians combine to form a cooperative venture with Stochasts as 
“scouts” and Cartesians as “exploiters”. Profits are shared. 
Different combinations a stochast/Cartesian behaviour compete.  
In this cooperative situation, there is always a short term advantage to a participant 
who will cheat.  
different strategies of specialization are adopted. E.g. Deep-sea or inshore fishing, 
or specialization by species.  
a fleet may adopt “variable” rationality, adapting its search effort according to the 
circumstances.  
in all circumstances, the rapidity of response to profit and loss turns out to be ad-
vantageous, and so the instability of the whole system increases over time.  
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The real point of these results is that they show us that there is no such thing as 
an Optimal Strategy. As soon as any particular strategy becomes dominant in the sys-
tem, then it will always be vulnerable to the invasion of some other strategy. More 
importantly for this paper, we see that it is the capacity of fleets to generate new 
knowledge and forget old that allows them to continue fishing into the future. So, once 
again we see that in order to create a learning capacity to respond to the fishermen ex-
hausting their immediate environment of fish, we need to relax their rationalities and 
make them wander and explore in order to make new discoveries. What is interesting 
is that instead of our “rationality” making us superior to nature and its unintentional 
ways, we see that we need to turn off our rationality, our clever economic calculations 
and our directed, intentional behaviour in order to continue fishing and find ways of 
returning to behaviour that is simpler.  
 
Emergent Market Structure  
The ideas developed in the sections above have been applied to a variety of systems, 
but here will be applied to the structuring of economic markets, as competition creates 
ecologies of firms producing goods in different market niches. The fundamental proc-
ess can be explored initially using a simple model in which we consider the possible 
growth/decline of several firms that are attempting to produce and sell goods on the 
same market. The potential customers of course will see the different products accord-
ing to their particular desires and needs, and in the simple case examined here, we 
shall simply consider that customers are differentiated by their revenue, and therefore 
have different sensitivities to price.  

The structure of each firm that is modelled is as shown in Figure (6). Inputs and 
labour are necessary for production, and the cost of these, added to the fixed and start-
up costs, produce goods that are sold by sales staff who must "interact" with potential 
customers in order to turn them into actual customers. The potential market for a 
product is related to its qualities and price, and although in this simple case we have 
assumed that customers all like the same qualities, they have a different response to 
the price charged. The price charged is made up of the cost of production (variable 
cost) to which is added a mark-up. The mark-up needs to be such that it will turn out 
to cover the fixed and start-up costs as well as the sales staff wages. Depending on the 
quality and price, therefore, there are different sized potential markets coming from 
the different customer segments.  

When customers buy a product, they cease to be potential customers for a time 
that is related to the lifetime of the product. For high quality goods this may be longer 
than for low quality, but of course, many goods are bought in order to follow fashion 
and style rather than through absolute necessity. Indeed, different strategies would be 
required depending on whether or not this is the case, and so this is one of the many 
explorations that can be made with the model.  

The model calculates the relative attractivity of a product (of given quality and 
price) for a customer of a given type (poor, medium or rich). This results in a calcula-
tion of the “potential market” for each firm at each moment, and the sales staff must 
interact with these potential customers in order to turn them into customers. When a 
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Figure 6. The Evolutionary Market Model structure. 
 is made, then the potential customer becomes a customer and disappears from the 
ket for a time that depends on the product lifetime.  

A very important issue that arises in the modelling concerns the rationality of 
manager of the firm in electing to adopt whatever strategy is chosen. In traditional 
nomic theories firms are supposed to act, or to have acted, in such a way as to ob-
 maximum profit. But, here, we can see that if we used the profit as the driving 
e for increased production, then the system could not start. Every new action 
st start with an investment. That is with a negative profit. So, if firms do start 
duction, and increase it, then this cannot be modelled by linking the increase in 
duction to the profit at that time. Instead, we might say that it is driven by the ex-
ted profit over some future time. But how does a manager form his expectations? 
bably a model of the kind that is being described here is way beyond what is usu-
 used, and in any case, there is a paradox. In order to build this model, in order 
haps for managers to formulate their expectations, the model requires a representa-
 of manager’s expectations. But this is only a paradox if we believe that the model 
bout prediction. Really, it is about exploration, the exploration of how we think a 
ket works, and so it is a part of a learning process, which may indeed lead partici-
ts to behave differently from the way that was supposed initially. Such an outcome 
ld already be a triumph.  

Despite this paradox, and the difficulty in knowing what is going to happen be-
hand, firms do start up, production is increased, and economic sectors are popu-
d with firms, so, even though there is this logical problem. Obviously it does not 
ry participants in reality. Since bankruptcies obviously also occur, then we can be 
 that the expectations that drive the investment process are not necessarily related 

he real outcomes.  In our model therefore we simply have assumed that managers 
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want to expand to capture their potential markets, but are forced to cut production if 
sales fall. So, they can make a loss for some time, providing that it is within their 
credit limit, but they much prefer to make a profit, and so attempt to increase sales, 
and to match production to this.  

The picture that emerges from this study of a dynamically, self-organizing mar-
ket sector model is that of the emergence of product niches. It is the economies and 
diseconomies of production and distribution that will determine the number, size and 
scale of these niches, and they will depend on the initial history of the market sector in 
question as a "lock-in" evolves. However, as new technology appears, or as the rest of 
society evolves, new attributes can come into play for the products. However, the ef-
fect and importance of these may be different when viewed by the producers as op-
posed to consumers. 

 

We can use our model to explore the effect of different learning strategies of firms. 
a. Death and Replacement. In this we assume that firms do not adapt their price 

and quality strategies but pursue them to success or bankruptcy. Following 
bankruptcy, however, we re-launch the firms into the system with a new, ran-
domly chosen strategy. This either survives or fails in its turn. A typical long-
term simulation is shown in figure (7). This shows the 2-D space of mark up 
(%) and quality (Q), and the positions of the various firms.  

 

 

Strategy Space - % 
mark up and Quality

Customers 
with the 
product 

Firms size 
and Strategy 

Two niches 
emerge 

 

Figure 7. A typical evolutionary run where gradually the “Darwinian” process dis-
covers two fairly stable niches – around Q=11, % = 40 and Q = 18, % = 85. 
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b. Hill-climbing. In the next version, firm 1 uses the “hill-climbing” method 
described in section 3 of the paper. Micro-diversity experiments allow learn-
ing.  

 
Figure 8. Here firm 1 tests the “profit gradient” and moves Q and % accordingly 
up-hill. It does much better, making a profit and paying a dividend to investors. 

 

c. All Hill-Climb. However, if we allow all the firms to “hill-climb”, then their 
mutual interaction reduces the advantage of learning.  

d. Imitation – Another strategy is for a firm to monitor the market carefully and 
for it to adapt its production as rapidly as possible to copy whichever firm is 
currently making most profit.  

e. All Imitation - We can also consider the impact on the system when all the 
firms imitate whoever is winning. All the firms move to the same place in 
strategy space, and in so doing increase the degree of competition that they 
each feel. As a result, there are more bankruptcies (9) than in any of the other 
simulations. What might have seen a “risk averse” strategy turns out to be the 
opposite! To imitate in a market of imitators is highly risky.   

f. Diverse learning Strategies - In section 5.1 concerning the emergence of dif-
ferent strategies among fleets of fishing boats it was shown that what mat-
tered was that an ecology of strategies emerged. Once again diverse strate-
gies are best. The market ecology/niches emerge fastest.  

 

In some ways, for public policy what matters is the level of customer satisfac-
tion, and the level of overall profit for the sector. In our accounting for overall costs 
we need to include that of bankruptcy since every time that it occurs in our model, the 
social system, other firms etc. lose 10,000 units. In the real world the costs can be 
more devastating still to those involved and could even lead to a serious limitation on 
the willingness of actors to innovate. 
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We can examine the question as to the overall outcomes for the “industry” of 
different strategies. In order to look at this, we have calculated the overall profits of 
the whole market, and we have included the costs of bankruptcies, in which often, a 
loser takes trade away from others in an attempt to keep going, but eventually crashes 
with debts. In the figure (9) we show the over all outcome for four different learning 
strategies. They are:  

• Darwinian (random strategies, no learning) 
• Old Strategy (If profit less than half average, reduce %) 
• Hill-Climbing 
• 3-6 hill-climbers, 1-3 imitators 

 

However, here we have also performed four different runs for different sequences of 
random numbers, implying simply a different sequence of chance events.  
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Figure 9. Mixed learning strategies work best. However, luck (the random sequence) 
can lead to very different market outcomes from highly profitable to only marginally so 
 

The invisible hand seems to be highly capricious – one might doubt its existence.   
 
Conclusions 

There are several important points about these results. They show us that for a 
system of co-evolving agents with underlying micro-diversity and idiosyncracy, then 
we automatically obtain the emergence of structural attractors such as figure (9). A 
structural attractor is the temporary emergence of a particular dynamical system of 
limited dimensions, from a much larger space of possible dynamical systems and di-
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mensions. These are complex systems of interdependent behaviours whose attributes 
are on the whole synergetic. They have better performance than any single, pure ho-
mogeneous behaviour, but are less diverse than if all “possible” behaviours were pre-
sent. In other words, they show how an evolved entity will not have “all possible char-
acteristics” but will have some that fit together synergetically, and allow it to succeed 
in the context that it inhabits. The structural attractor (or complex system) that 
emerges results from the particular history of search and accident that has occurred 
and is characteristic of the particular patterns positive and negative interactions of the 
components that comprise it. In other words, a structural attractor is the emergence of 
a set of interacting factors that have mutually supportive, complementary attributes.   
 
What are the implications of these structural attractors: 
♦ self-organisation in chemistry and physics is limited by the lack of micro-diversity 

of the underlying components. Once we reach polymers and organic compounds 
however, this situation changes and evolution becomes a reality.  

♦ The search carried out by the “error-making” diffusion in character space leads to 
the emergence of diverse structures and organisation expressing overall synergy  

♦ the whole process leads to the evolution of a complex, a “community” of agents 
whose activities, whatever they are, have effects that feed back positively on 
themselves and the others present. It is an emergent “team” or “community” in 
which positive interactions are greater than the negative ones.  

♦ a successful and sustainable evolutionary system will clearly be one in which 
there is freedom and encouragement for the exploratory search process in behav-
iour space. Sustainability in other words results from the existence at multiple lev-
els of a capacity to explore and change. This process leads to a highly co-
operative system, where the competition per individual is low, but where loops of 
positive feedback and synergy are high. In other words, the free evolution of the 
different populations, each seeking its own growth, leads to a system that is more 
co-operative than competitive. The vision of a modern, free market economy lead-
ing to, and requiring a cut-throat society where selfish competitivity dominates, is 
shown to be a false view of evolution, but probably reflects a convenient one for 
the powerful.   

 

The most important point really is the generality of the model presented above. 
Clearly, this situation characterizes almost any group of humans: families, companies, 
communities etc., but only if the exploratory learning is permitted will the evolution-
ary emergence of structural attractors be possible.  

The structural evolution of complex systems is as shown in figure (9) how ex-
plorations and perturbations lead to attempts to suggest modifications, and these lead 
sometimes to new “concepts” and structural attractors that have emergent properties. 
The history of any particular product sector can then be seen as an evolutionary tree, 
with new types emerging and old types disappearing. But in fact, the evolution of 
“products” is merely an aspect of the larger system of organisations and of consumer 
lifestyles that also follow a similar, linked pattern of multiple co-evolution.   
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Figure 9. On the left we have “dictionary” of possible core concepts, practices or 
ideas. These are “bundled” on the right and if the different elements have synergy 

then the structure is successful. 
 

Throughout the economy, and indeed the social, cultural system of interacting 
elements and structures we see a generic picture at multiple temporal and spatial scales 
in which uncertainty about the future allows actions that are exploratory and diver-
gent, which are then either amplified or suppressed by the way that this modifies the 
interaction with their environment.  Essentially, this fulfils the early vision of dissipa-
tive structures (Nicolis and Prigogine, 1977;:Prigogine and Stengers, 1987), in that 
their existence and amplification depend on “learning” how to access energy and mat-
ter in their environment.  Can they form a self-reinforcing loop of mutual advantage in 
which entities and actors in the environment wish to supply the resources required for 
the growth and maintenance of the system in question. In this way, structures emerge 
as multi-scalar entities of co-operative, self-reinforcing processes.   

What we see is a theoretical framework that encompasses both the evolutionary 
and the resource-based theory of the firm. And, not only of the firm, but also of the so-
cial and economic system as a whole. It is the complex systems dialogue between explo-
rations of possible futures at one level, and the unpredictable effects of this both at the 
level below and the level above. There is a dialogue between the “trade-offs” or “non-
linearities” affected inside and outside the particular level of exploration. But it is also 
true that all levels are exploring. Unless there is an imposition of rigid homogeneity up 
and down the levels of the system, there will necessarily be behavioural explorations due 
to internal diversity. In this way, multi-level systems are precisely the structures that can 
“shield” the lower levels from instantaneous selection, and allow an exploratory drift to 
occur, that can generate enough diversity to eventually DISCOVER a new behaviour 
that will grow. Without the multiple levels, selection would act instantly, and there 
would be no chance to build up significant deviations from the previous behaviour. 

This paper sketches out an integrated theory of biological, economic and social 
evolution. It suggests how the diversity that characterizes an evolved structure is cre-
ated by the action of lower level error making processes that generate micro-diversity. 
Furthermore, evolution itself selects for systems that can evolve and adapt structures – 

 18



SELFORGANIZATION IN NONEQUILIBRIUM SYSTEMS  

that is ones that allow internal error-making explorations. This is as true for our or-
ganisations and social structures and for the artefacts that we create. Products them-
selves exist as embodiments of attributes that are synergetic (internally coherent) clus-
ters, and different product markets emerge naturally as a result of inherent conflicts 
between attributes. For example, a palmtop computer cannot have a really easy to use 
keyboard (under existing design concepts) and so notebooks and laptops exist in a dif-
ferent market to palmtops. Similarly, toasters and telephones also occupy separate 
markets because answering a call on a toaster/telephone can set your hair on fire. So, 
again it is the “complementarities and conflicts” of possible attributes that structures 
the space of possible product or service markets.  

If we return to the fundamental level of why a mathematical model will always 
be a model of being and not one of becoming, we see that the fundamental assumption 
is that of an underlying Markov Process. But, what we see is that although all the in-
formation can be present in a model concerning the mechanisms we know, there will 
always be mechanisms that we don’t know about that are on-going! In the ecological 
case of section 2 the fact is that we do not know which dimensions of micro-diversity 
really matter for the system, nor do we know how memories within organisms will 
affect their behaviour. This means that fundamentally our simplification turns a living, 
evolving reality into a dynamic description that does not contain the “future” of the 
real system, but only the simpler future of its reduced description. We can see why 
some mathematical models can be successful at predicting behaviour in physical sys-
tems, but not in predicting evolution in complex biological and social ones.  
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Abstract 
Experimental and computational studies are reported of reaction-diffusion waves in 
the Belousov-Zhabotinsky system with an immobilised catalyst printed on a mem-
brane. Inhomogeneous media are created by printing domains with pre-determined 
“gaps” in which no catalyst is present. The propagation of single waves or of wave 
trains across either a single gap or a series of gaps is determined for excitable systems. 
This provides a chemical model of wave propagation in the simplest inhomogeneous 
biological systems but may throw light on features relevant in AV node block in car-
diac arrhythmia or in the action of local anaesthetics. Experimental results show com-
pete wave propagation for small gaps, complete wave block for large gaps, and an in-
termittent response between these extremes with n waves transmitted for every m inci-
dent waves (n < m) analogous to the Wenckebach rhythms observed in heart tissue. 
These observations are confirmed through computed solutions using an Oregonator 
model for the BZ reaction. 
 
Introduction 
The propagation of waves in excitable or active media is of vital importance in living 
systems and has, consequently, been an area of considerable research [1]. Biological 
systems are necessarily complex and typically extensively heterogeneous in nature. 
Chemical systems, by contrast, provide an attractive medium in which to study generic 
features of such waves: chemical systems are more easily controlled and waves typi-
cally evolve on convenient length and time scales that can be monitored directly by 
optical imaging. On the length-scales involved, effectively homogeneous domains can 
be created – with then inhomogeneity introduced in a step-by-step manner under the 
control of the experimenter. Furthermore, the corresponding reaction-diffusion equa-
tions can be written in a rigorous manner allowing experimental phenomena to be 
tested by numerical computation. 

One area in which observations of wave activity in chemical media has contrib-
uted to enhanced understanding of biological systems concerns the arrhythmia that 
develop in unhealthy heart tissue – potentially leading to diseased states such as ven-
tricular fibrillation and sudden cardiac death [2]. Various potential causes of the break-
up of normal waves of cardiac muscle contraction which may then lead to the creation 
of “re-entrant structures” or scroll waves representing abnormal organisation of car-
diac activity have been identified. One particular area of interest involves the commu-
nication of the initial wave across the atria to the ventricles involving transmission of 
the activity through the AV node region to the Purkinje fibres. In a classic experiment, 
Jalife and Moe [3] used excised canine Purkinje fibres which were threaded through 
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three chambers in which the fibre is perfused with different solutions rendering it 
spontaneously oscillatory in one region, inactive to wave propagation in the second 
and excitable in the third. This “sucrose gap” preparation was taken as an in vitro 
model for an ectopic (abnormal) pacemaker system coupled to a region of depressed 
conductivity. 

In this paper, we report on an even more simplified version of this classic ex-
periment involving an “inexcitable” or “inactive” gap within an excitable or active 
domain based on the well-known Belousov-Zhabotinsky system. Results are expected 
to be generic and therefore of relevance to AV node transmission and also to other 
biological manifestations of (essentially) 1D wave propagation such as those in the 
ureter [4,5]. 

Experimental 
The experimental system comprises a polysulfone membrane printed with the redox 
catalyst in the form of bathoferroin [6]. The printing is carried out via an ink-jet 
printer loaded with 0.025 M bathoferroin solution, using a standard computer drawing 
package to design the desired domain geometry (typically a long, thin rectangle of 
homogeneous colour density with one or more “gaps”). The membrane is then 
mounted on an agar gel (1.5%) which has been bathed in a solution of the remaining 
BZ reagents. Typical reagent concentrations are: malonic acid 0.17 M, bromate ion 
0.30 M, sulfuric acid 0.25 M yielding an excitable system.  

The reaction domain is illuminated from below and imaged from above with a 
video-camera linked to a PC-based data-capture and image-processing system. (For 
full experimental details see [7].) Waves are initiated using a silver wire and either 
single waves or a succession of waves forming a wave train of selected wavelength 
governed by the periodic initiation frequency is obtained. 

Results 
Figure 1(a) shows successive image of a pseudo-one dimensional strip of printed cata-
lyst with a single gap approximately half-way along the domain. An oxidation wave 
enters at one end in the 14th image and propagates along the strip. In the 20th image it 
reaches the gap. After a slight delay, the an excitation is initiated on the other side of 
the gap and the “signal” propagates successfully into the second region. (The ap-
proximate position of the wave in each image is shown in the space-time plot beneath 
the main figure – this reveals the phase delay at the gap more clearly.) This is charac-
teristic of a system with a narrow gap. For domains with significantly wider gaps there 
is no propagation of the excitation across the gap and the “signal” fails – correspond-
ing to a “wave-blocked” state.  

These results suggest the existence of a “critical gap width”. However, investi-
gation of gap widths slightly larger than for figure 1(a) shows a different response, as 
indicated in figure 1(b)  In this case the system is subjected to a series of waves in the 
form of a wave train of a particular wavelength. The first wave is able to propagate 
across the gap and excite the second region. The second wave, however, does not lead 
to excitation or propagation across the gap. This arises as the first wave has experi-
enced a delay at the gap and the second wave arises before the domain has fully 
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Figure 1. Experimental space-time plots showing successive images of a wave 

propagating along a quasi-1D domain with a single gap. In (a) gap width W = 0.10 
mm and the signal is transmitted across the gap after some phase delay (see lower 
image). In (b) W = 0.12 mm and the wave train has a period Tp = 100 s: only every 
second wave is transmitted across the gap, yielding a firing number fn = 0.5. Not 
the increase in velocity of the successful wave as it emerges across the gap (seen 

most clearly in the lower image). 

recovered – the autocatalyst diffusing across the gap encounters a raised concentration 
of the inhibitor bromide ion and cannot excite the system. The third wave approaches 
and, as the domain on the far side of the gap now has had longer to recover, this exci-
tation is able to enable wave propagation. This alternation between transmission and 
failure continues so that one wave is transmitted for every two waves that enter the 
domain and there has been a “frequency transformation” across the gap. The space-
time plot also indicates that after crossing the gap, successful waves show an increase 
in velocity as they are entering a region in which the previous wave did not progress 
and therefore did not produce an enhanced concentration of the inhibitor bromide ion 
species. 

As the gap width (or the reagent concentrations) are varied, so different num-
bers of transmitted waves compared to failing waves are encountered. This can be 
quantified in terms of a “firing number” fn = no. of waves transmitted/no. of incident 
waves. The firing number is a decreasing function of the gap width, with fn = 1 for suf-
ficiently small gaps (complete propagation) and fn = 0 for sufficiently large gaps 
(complete failure). The variation of the firing number with gap width forms a “Devil’s 
staircase” as shown in figure 2. The variation of the firing number with gap width var-
ies with the period of the wave train – fn decreases as the period decreases as does the 
critical gap width Wcr (the width at which fn falls to zero).  

For a system with two (identical) gaps in which each gap is less than the critical 
gap width, successful propagation depends also on the spacing S between the gaps. 
The variation of the domain firing number fr, defined as the fraction of waves propa-
gating through the whole system (i.e. over both gaps) with S for two-gap systems with 
various gap widths is shown in figure 3. 
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Figure 2. The experimentally-determined variation of the firing number fn with 
gap width W for single waves and for wave trains of two different periods for a 

system with a single gap. 

 

 
Figure 3. The variation of the domain firing number fr with the spacing S between 

gaps of various widths W as determined experimentally for a two-gap systems. 

Similar experiments with systems of many gaps can be performed and the firing num-
ber determined as a function of gap number: see [7] for details. 

In terms of modelling AV node block, this mimics the situation in which not all 
excitations of the atria lead to contractions of the ventricles and to the phenomena of 
Wenckeback cycles [8]. Similar “resonance effects” have been reported for the BZ 
system previously by Toth et al. [9] who followed the propagation of waves from one 
domain to another along narrow tubes in order to establish the existence of a critical 
initiation radius, and by Suzuki et al. [10] for propagation across gaps in membrane-
localised systems.  

Numerical Modelling 
The basic dynamics of the BZ system can be adequately modelled using the two-
variable Oregonator model [11] which can be written for our system in the following 
dimensionless reaction-diffusion form [12] 
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where u and v are the dimensionless concentrations of the autocatalytic species HBrO2 
and the oxidised form of the redox catalyst (the “recovery” variable) respectively. 
These equations describe wave evolution within active domains. 

To model gaps of inactive medium within the domain, the redox catalyst is 
taken to be absent and the only chemistry occurring is the disproportionation of the 
autocatalyst, so the system is governed by the simpler equations 
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Equations (1,2) were integrated numerically using the package XPPAUT [13]. Waves 
were initiated by setting u periodically to some value umax over the first five grid 
points.  

The computed wave solutions show the same generic responses as the experi-
ments described in the previous section. A typical space-time plot showing a 2:3 reso-
nance pattern is shown in figure 4. 

 
Figure 4. Computed space-time plot for a single gap system with W = 0.108 mm 

and a wave train of period Tp = 35.3 s computed with f = 3 and ε = 0.054. 

The firing number can be determined as a function of both the gap width and 
the period of the wave train. Using estimates of the rate coefficients from [12] and 
typical initial reactant concentrations from our experiments, these can be converted 
into dimensional quantities. The resulting variation of fn across the W-Tp parameter 
plane is shown in figure 5 for two different values of the stoichiometric factor f in 
equation (1), namely f = 2.4 and f = 3 (the latter being less excitable).  

For systems with two gaps, and for which the gap with is less than the critical 
width for a single gap, the ability of a wave to propagate through the whole system 
depends additionally on the spacing between the gaps. This spacing represents a part of 
the domain in which the wave which has become attenuated as it has passed the first gap 
can “recover” in amplitude before encountering the second gap. Again, we observe 
resonance effects in both experiment and computation. Figure 6 shows the variation of 
the firing number with the spacing S between two gaps for a variety of gap widths W. 
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Figure 5. The variation of the firing number fn with gap width and wave train pe-

riod for a system with a single gap as determined numerically from equations (1,2). 

In general, the larger the gap width, the larger the spacing required to allow the wave 
to propagate. Resonance, and hence frequency transformation, may occur at either gap 
and in some cases (typically where resonance effects arise at the first gap) the fraction 
of waves propagating across the whole system may decreases as the spacing between 
the gaps increases. 
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Figure 6. The variation of the firing number fn with the spacing S between two 

gaps for a two-gap system for various gap widths as determined numerically from 
equations (1,2). 
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Finally, we have investigated systems with large numbers of gaps. In both ex-
periment and in numerical computations, we find that for a given set of experimental 
conditions (as expressed in terms of the parameter values), there is some maximum 
number of gaps across which the wave can propagate.  

Conclusions 
The results described above indicate that excitable chemical systems can serve as 
models for generic phenomena in such systems and so help contribute to the under-
standing of, for example, important biological systems. In this study we have demon-
strated effects such as wave block, a critical wave gap and “resonance effects” in sin-
gle and multiple gap systems. These have been observed experimentally and con-
firmed qualitatively (and semi-quantitatively) numerically based on a simple Oregona-
tor-model representation. In earlier numerical work on systems with single gaps, 
Sielewiesiuk and Gorecki [14,15] have proposed that the existence of a critical gap 
width and of resonance responses could for the basis of a “chemical electronics”, and 
several key components such as logic gates and memories have been demonstrated by 
printing appropriate domains of catalyst on membranes of different types [6, 9, 16-18]. 
With systems containing many gaps, the spacing between the gaps becomes an impor-
tant parameter. In general, the larger the spacing, the more the wave can recover be-
tween gaps and hence the higher the probability of complete propagation. In some cir-
cumstances, however, there appears to be a more complex response and this may be 
(numerical evidence) of the unexpected phenomenon predicted by Yang et al. [19] on 
the basis of an analysis of the bistable wave equation. 
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Abstract 
A new method for the classification of electrochemical oscillators is proposed. It is 
based on changing the specific capacitance Cd of the double-layer via a special feed-
back procedure. Effect of such changes is numerically tested on prototype models for 
N-NDR and S-NDR oscillators. 
 
Introduction 
Dynamics of oscillating electrochemical systems depends not only on the surface con-
centration of electrochemically active species but also on the potential drop φDL (V) 
across the double-layer. Considering the nonessential or essential role of double-layer 
potential, the electrochemical oscillators are classified, respectively, as i) truly poten-
tiostatic or ii) NDR-type oscillators. Here, NDR stands for the Negative Differential 
Resistance of the cell observed at RΩ = 0 series resistance. NDR-type oscillators are 
further grouped into N- and S-type systems where S and N refer to the characteristic 
shape of the polarization curve. In N- and S-type systems the electrode potential acts, 
respectively, as an essential positive or negative feedback variable. There also exist 
systems of hidden negative resistance of the N-type (HN-NDR). These systems oscil-
late under galvanostatic conditions, while N-NDR systems show bistability only [1].    

In recent years, an operational procedure – based on studying the dynamics as a 
function of the cell resistance – has been proposed to identify the type of an electro-
chemical oscillator [2]. However, changing the resistance of the cell is not always an 
easy task. Chemically, it can be achieved by changing electrolyte composition that 
might affect kinetic parameters; electronically, the solution resistance can be varied by 
IR compensation.  

In this paper, we propose a new method for the classification of electrochemical 
oscillators.  It is based on changing the specific capacitance Cd of the double-layer via 
a special feedback procedure. The effect of such changes will be numerically studied 
on prototype models for N-NDR and S-NDR oscillators. 
 
Method 
In electrochemical systems, the specific double layer capacitance Cd defines the time-
scale for the variation of φDL as shown by the following equation:  
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where iF is the Faraday current density, c is the concentration of some electroactive 
species, θ is the surface coverage, V is the applied circuit potential,  A is the surface 
area of the electrode, and RΩ is the cell resistance. That is, by changing the value of 
Cd, the fast or slow character of dynamical variable φDL can be modified. Therefore, 
current oscillations could be easily suppressed or induced.  

Value of Cd can be changed chemically by covering the electrode, for example, 
with a poly-aniline–film acting as a pseudo-capacitance [3]. Our proposed new 
method, which is a modified (recursive) version of the so called derivative control, is 
more effective and better controllable since the pseudo-capacitance is set and varied 
electronically. Let us change the circuit potential according to the following equation:   
 

 
dt

dV
dt
diR

dt
dVVV DLϕαα +=−+= Ω oo , (2) 

 
where α is the control parameter. Substituting eq (2) into eq (1) results in a new dy-
namical equation for the cell under recursive control: 
 

 
ΩΩ

−
+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

AR
Vci

dt
d

AR
C DL

DLF
DL φφθφα o

d ...),,( , (3) 

 
It is easy to see that the new term Cd’ = −α/ARΩ on the left-hand side of eq (3) 

acts on the system as we have created a pseudo-capacitance. The effect of changing 
the special double-layer capacitance will be numerically studied on the model of the 
following electrochemical systems:  
 

A) Cu electro-dissolution (N-NDR type oscillator) 
B) Zn electro-deposition (S-NDR type oscillator) 

 
Results and discussion 
A) The effect Cd on N-NDR oscillators.  
The Koper-Gaspard dimensionless model [4] was used to simulate Cu dissolution in 
phosphoric acid solution: 

 uek
R

eV
dt
deC )(120d −

−
= ,  (4a) 
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where V is the applied circuit potential, e the double-layer potential, R is the series re-
sistance, d is the rotation rate, u and w are the dimensionless concentrations of some 
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electroactive species, respectively, in the surface and diffusion layers, k(e) is the po-
tential dependent rate constant defined as:  
 
 ,   (5) )]30(5.0exp[01.05.2)( 2 −+= eek θ

 
where θ is related to the potential dependent surface coverage by the electroactive 
species: 
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The experimentally measurable quantity, the current, is obtained as i = (V-e)/R. 

Dynamics of model eqs 1-6 have been studies in detail by Koper and Gaspard [4]. For 
an appropriate range of parameters, the model simulates the experimentally observed 
dynamical behavior of Cu dissolution in phosphoric acid. In this study, we set R = 
0.02 and d = 0.11913, and the dynamical features are explored (see Figures 1-3) by 
systematically varying the circuit potential V and the specific double-layer capacitance 
Cd.  
 

 

Figure 1. Current oscillations at V = 36.72 are suppressed by increasing the dou-
ble-layer capacitance Cd from 1 to 2.5 at t = 100 (shown by the arrow). 
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Figure 2. One parameter bifurcation diagram showing the minima and maxima of 
current oscillations as a function of the double-layer capacitance Cd at V = 36.72. 

Oscillations disappear by a supercritical Hopf-bifurcation (H). 

Stable steady state

Oscillations

 
Figure 3.  Phase diagram of the N-NDR model system (eqs. 4). Solid line is the 

locus of Hopf bifurcations. 

 

B) The effect Cd on S-NDR oscillators.  
The Lee-Jorné model [5] has been applied to simulate Zn electro-deposition. The 
originally two-variable model describing the coverage by the adsorbed H and Zn+ (θ1 
and θ2, respectively) has been extended to incorporate the IR drop through the electro-
lyte and an external resistance. The dimensional equations are as follows:  
  

 ),,( 21d θθej
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where e and V are, respectively, the double-layer and circuit potentials (V), R is resis-
tivity (Ωcm2), Γ1 and Γ2 are the surface concentrations of Had and Znad

+, and Ak are 
kinetic parameters. The current density jF is defined by the following equation: 
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where F is the Faradaic constant. The kinetic parameters were optimized by Lee and 
Jorné as follows:  
 

A1 = 5.53×10-7 exp(-19.3 V) mol/cm2 s,  
A2 = 3×10-9 exp(-29.3 V) mol/cm2 s,  
A3 = 2.45×10-5 exp(-33.8 V) mol/cm2 s,      
A3’ = 7.5×10-5 exp(4.8 V) mol/cm2 s,  
A4 = 1×10-6 mol/cm2 s,  
A5 = 5.4×10-8 exp(-38.6 V) mol/cm2 s,  
A6 = 1×10-9 mol/cm2s.  

 
Γ1 and Γ2 were approximated by Epelboin et al. from impedance data [6, 7]:  

 
Γ1 = 1.36×10-7 mol/cm2,  
Γ2 = 9.067×10-11 mol/cm2.  

 
In this study, we set R = 2 Ω cm-2, and the dynamical features are explored (see Fig-
ures 4-6) by systematically varying the circuit potential V and the specific double-
layer capacitance Cd. The current density is calculated as j = (V - e)/ R. 
 

 
 
Figure 4. Current oscillations at V = –55 mV are induced by increasing the specific 

double-layer capacitance Cd from 2.5 µF cm-2 to 2.5 F cm-2 at t = 300 s. 
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Figure 5. Bifurcation diagram showing the minima and maxima of current oscilla-
tions as a function of the double-layer capacitance Cd at V = -55 mV. Oscillations 

appear by a Hopf-bifurcation (H). 

 

Oscillations

Stable  
steady state

 
Figure 6. Phase diagram of the S-NDR model system (eqs. 7). Solid line is the lo-

cus of Hopf bifurcations. 

 
 
Conclusions 
As shown by the calculated time series data, bifurcation diagrams and phase diagrams, 
the effect of double-layer capacitance on the stability of electrochemical oscillators 
can be summarised as follows: 

• N-NDR oscillators are stable at large Cd values,  
• S-NDR oscillators are stable at small Cd values. 
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The proposed feedback method is based on being able to experimentally vary the time-
scale of an essential variable in a dynamical system. Experiments in good accordance 
with the presented numerical results are in progress, and results will be reported else-
where. We also plan to extend our investigation to HN-NDR systems as well. 
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METALS. COMPARISON WITH EXPERIMENT. 
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Prosp. Akad. Lavrentieva, 5, 630090, Novosibirsk, Russia 
 

The complex dynamic behavior in oxidation reaction over platinum metals (bistability, 
oscillations, surface autowaves, etc.) can be directed by the structure of the reaction 
mechanism, specifically by the laws of physicochemical processes in the «reaction 
medium - catalyst» system. The most popular factors used to interpret the critical ef-
fects are the following [1]: i) phase transformations on the catalyst surface, including 
the formation and decomposition of surface and subsurface oxides during the reaction 
(e.g., Pd(110)), ii) structural phase transitions of the surface and its reconstruction due 
to the influence of the reaction media (e.g., Pt(100)).  

In our opinion, the imitation (or statistical) simulation based on the Monte-Carlo 
technique is the most efficient tool for describing the spatio-temporal dynamics of the 
behaviour of adsorbates on the real catalytic surface, whose structure can change dur-
ing the reaction. Recently the statistical lattice models for imitating the oscillatory and 
autowave dynamics in the adsorbed layer during CO oxidation over Pd(110) [2] and 
Pt(100) [3] single crystals, differing by the structural properties of catalytic surfaces, 
has been studied.  

The aim of this contribution is to study the influence of surface diffusion inten-
sity on the shapes of surface concentration waves obtained in simulations. Let us re-
strict our consideration by CO oxidation reaction over Pd(110) (similar results has 
been obtained by simulation of CO+O2/Pt(100) [3]). 

Detailed mechanism of this reaction has been established by means of FEM, 
TPR and XPS studies [4]: 

 

1) O2(gas) + 2∗  → 2Oads;                   4) Oads  +  ∗v  →  [∗Oss]; 
2) COgas +  ∗ ↔  COads;                   5) COads + [∗Oss] → CO2(gas) + 2∗ + ∗v; 
3) COads    + Oads → CO2(gas) + 2∗;      6) COgas + [∗Oss] ↔  [COads∗Oss];  
             7) [COads∗Oss] → CO2(gas) + ∗ + ∗v   -   «cork-screw» reaction 

Let us briefly describe the algorithms used in simulations. The model catalyst 
surface was represented by the square lattice N×N (N = 400 – 1600) with periodic 
boundary conditions. States of the lattice cells are determined according to the rules 
prescribed by the detailed reaction mechanisms used in the cases under study. So-
called Monte Carlo step (MCS) consisting from N×N elementary actions was used as a 
time unit. During the MCS each cell is tested on the average once. By elementary ac-
tion it is meant a trial to change a state of the randomly chosen centre in such a man-
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ner, as it will with the substances taking part in the elementary processes (steps) con-
stitute the detailed reaction mechanism. The probability of the particular process wi is 
determined by a ratio between the rate coefficients, therewith the rate coefficients for 
the adsorption processes are multiplied by the relevant partial pressures. The values of 
the rate coefficients of the elementary processes used in simulations could be found in 
[2,3]. During the MCS after each of N×N trial to carry out one of the elementary ac-
tion the inner cycle of COads diffusion has been arranged (usually M = 50-100 attempts 
of diffusion). The diffusion is necessary for the spatio-temporal processes synchroni-
zation occurring on the different regions of the model surface. The reaction rate and 
surface coverages were calculated after each MCS as a number of CO2 molecules 
formed (or the number of cells in the corresponding state) divided by the total number 
of the lattice cells N2. 

In both cases [2,3] the synchronous oscillations of the reaction rate and surface 
coverages are exhibited within the range of the suggested model parameters under the 
conditions very close to the experimental observations – e.g., Fig 1. These oscillations 
are accompanied by the autowave behaviour of surface phases and adsorbate cover-
ages, Fig. 2. One can see from the Figs. 1 and 2 that the oscillations are quite regular, 
and the shape of oxygen waves is of prominent cellular pattern of change: the initia-
tion of oxygen fronts propagation proceeds simultaneously at different local regions of 
the model surface, and the Oads and COads coverages alternate during the period of os-
cillations. The intensity of CO2 formation in the COads layer is low, inside oxygen is-
land it is intermediate and the highest intensity of CO2 formation is related to a narrow 
zone between the moving Oads island and surrounding COads layer - «reaction zone», 
characterised by the elevated concentration of the free active centres [2]. The presence 
of the narrow reaction zone was found experimentally by means of the field ion probe-
hole microscopy technique with 5 Å resolution [5]. The important role of the diffusion 
rate and of the lattice size on the synchronisation and stabilisation of surface oscilla-
tions has been demonstrated. Particularly, in the case of Pt(100), the decrease of the 
diffusion intensity (parameter M) from 100 to 30 leads to the irregular oscillations and 
to the turbulent patterns on the model surface – in this case the mobile islands of Oads 
shaped as cellular waves, spiral fragments, etc., are formed [3]. Similar spatiotemporal 
behavior was experimentally observed in CO+O2/Pt(100) using the EMSI technique 
[6]. 

Let us study the influence of diffusion intensity M on the shape of the surface 
waves in the case shown in the Fig. 2. Decrease of M up to value M = 50 doesn’t 
change significantly the oscillatory and wave dynamics, but decreasing M to value M 
= 20 drastically changes both the shape of oscillations and the spatiotemporal behav-
iour of simulated surface waves. Period and amplitude of oscillations decrease 
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Figure 1. Dynamics of changes in the surface coverages COads (solid line) [COads∗
Oss] (dash-dotted line) (a), [∗Oss] (b), Oads (c), R (d) - for CO oxidation over Pd(110). N 
= 1000, M = 100. The values of the rate constants of steps (s-1) (see scheme): k1=1, 
k2=1, k-2=0.2, k3=inf, k4=0.03, k5=0.01, k6=1, k-6=0.5, k7=0.02. The partial pressures of 
reagents (CO and O2) are included in the rate constants of adsorption (k1, k2, k6). 

 

Figure 2. The distribution of different adsorbates over the surface at the moment 
when the coverage change on the Pd(110) surface. Dark grey regions indicate the 
propagating oxygen islands, light grey regions – COads layer. The lattice size N = 
1000, diffusion intensity parameter M = 100. 

 
considerably, the dynamic behaviour of reaction rate and surface coverages demon-
strate the intermittence (oscillatory regime I). During these oscillations oxygen (Oads) 
is always present on the surface (as opposed to the case of Figs. 1 and 2) in the form of 
turbulent spatiotemporal structures (Fig. 3a). It is seen from Fig. 3a that the whole sur-
face is divided in several islands oscillating with the same  

 37



SELFORGANIZATION IN NONEQUILIBRIUM SYSTEMS  

Figure 3. Typical snapshots of the adsorbate distribution over the surface (N = 1000) 
at step-by step reducing of k1 in the case of restricted diffusion intensity of COads 
(M=20). The designations of adsorbate are the same as for Fig. 2. The values of par-
tial pressure of oxygen (i.e., k1) are the following: 1 (a), 0.9 (b), 0.85 (c), 0.8 (d), 0.73 
(e), and 0.71 (f). 

period but with a phase shift relative to each other, therefore the reaction rate and cov-
erage’s time dependencies demonstrate the intermittence peculiarities. Here it can ob-
serve on the surface the spatio-temporal pattern of complicated turbulent shape. The 
colliding oxygen islands form the spiral-like patterns. The nature of the appearing of 
spiral-like patterns could be explained using the results obtained in [7]. Here we stud-
ied the oscillations in the СО + О2/Pd(110) over the few nanocrystals of Pd initially 
independent of each others, i.e., the COads diffusion between the different parts of the 
surface was prohibited. After the removing boundaries for the COads diffusion the col-
liding oxygen waves generate the stable spiral wave. The main conclusion of [7] was 
that namely the phase shift between colliding local oscillators could lead to the spiral 
patterns formation. Step-by step decrease of oxygen partial pressure (remember, that 
the values for O2 and CO adsorption coefficients, k1, k2, and k6, can be treated as 
product of the impingement rate (ki×Pi) and of the sticking coefficient (Si)) leads to the 
gradual thinning of oxygen travelling waves (Fig. 3b-e). At low values of k1 (Fig. 3d-
f) the long and thin oxygen stripe (or worm-like) patterns are formed on the simulated 
surface, and the clear tendency of turbulent patterns to combine into spirals disap-
peared at k1 < 0.8. The amplitude of oscillations diminished with decreasing of k1. At 
last, at k1 = 0.71, the oxygen stripe wave vanish slowly from the surface and the sys-
tem transform to the low reactive state (the surface is predominantly covered by CO-
ads). 

The reverse increasing of k1 leads to hysteresis in oscillatory behaviour. The os-
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cillation appears only at k1 = 0.85 via very fast “surface explosion” (Fig. 4a-h). It  

Figure 4. The snapshots illustrating the rise of oscillations at inverse step-by-step in-
creasing of k1, k1 = 0.85. The difference between the frames is 5 MC steps. 

is surprising that the characteristics of oscillations differ drastically from those ob-
served at gradual decreasing of k1 at the same value of k1 = 0.85. Now the amplitude 
of oscillations (coverage’s and reaction rate) is larger than in regime I, and instead of 
turbulent spiral-like pattern (Fig. 3c) we observe the alternately change of Oads and 
COads layers via growing cellular oxygen islands (Fig. 4) similar to the case with large 
diffusion intensity (Fig. 2). The interval of existence of this regime (regime 2) is quite 
large: 0.98 > k1 > 0.83. At low bound of this interval (i.e., k1 = 0.83) the ring struc-
tures of growing oxygen islands had been observed (Fig. 5) – during the oxygen island 
propagation CO have time to adsorb into its centre. In this case the period of oscilla-
tions increased significantly. 

          
 
Figure 5. The snapshots illustrating the propagation of ring-like islands of oxygen at  
k1 = 0.83. The difference between the frames is 50-80 MC steps. 
 

Only at k1 = 1 occurs the transformation from the regime 2 to the regime 1 – we 
observe again the turbulent patterns over the surface (Fig. 3a). Thus, the hysteresis in 
oscillatory behaviour has been found by kinetic Monte-Carlo modelling of CO oxida-
tion reaction over Pd(110). Two different oscillatory regimes (Fig. 6) could exist at 
one and the same parameters of the reaction (e.g., oxygen partial pressure). The pa-
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rameters of oscillations (amplitude, period and the shape of spatiotemporal patterns on 
the surface) depend on the kinetic prehistory of the system. 

Thus, the possibility for the appearance of the cellular and turbulent patterns, 
spiral and stripe waves on the surface in the cases under study has been shown. The 
results obtained make possible to interpret the surface processes on the atomic scale. 

 
 
 
 
 
 
 
 
 
Figure 6. The characteristics of 
two different oscillatory regimes 
at k1 = 0.85. At the bottom of 
Figure – characteristics of the 
regime I: period of oscillations 
~250 MCS, turbulent spiral-like 
patterns on the surface. On the 
top of Figure – characteristics of 
the regime II: period of oscillati-
ons ~1000 MCS, the alternately 
change of Oads and COads layers 
via growing cellular oxygen 
islands. 
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Abstract 
A general necessary condition providing a long-term stable evolution of any natural 
system is - the fluctuations that the system exerts should be bounded so that the system 
permanently stays within its thresholds of stability. The relation between the bounded-
ness of the fluctuations and the presence at the power spectra of a continuous band that 
fits the shape ( )ff α1 makes the observation of such band criterion for a stable long-

term evolution. ( ) 1→fα  at 
T

f 1
→  ( T  is the length of the time series and ( )α f  

monotonically increases at f  increasing. A mechanism that sustains the fluctuations 
bounded at open catalytic systems is presented. 
 
Introduction 
 One of the most challenging tasks of the catalytic reactions study is the issue 
about their long-term stability. Usually it is associated with the particular changes of 
the catalyst properties happened in the course of time. The major goal of the present 
paper is to verify that, when presented, certain characteristics of the temporal behavior 
of each catalytic reaction serve as a simple criterion for a stable long-term evolution. 
Next the case when the catalyst properties remain unchanged in the course of the time 
is considered.  
  Our study starts with revealing the properties of the temporal variations of the 
catalyst bed temperature recorded at the oxidation of HCOOH  over supported  
catalyst [1] at large range of the feed concentrations and in broad temperature interval. 
Though the amplitude of the most of the variations does not exceed 7% of the average, 
there are occasional variations as large as 50% of the average. The permanent presence 
of irregular variations poses the question about their origin and the relation to the sta-
bility of the system. Two of 80 recorded time series are presented at Fig.1 and Fig.2. 

Pd

 The most powerful tool for revealing the properties of irregular time series is 
the study of their power spectra. There is a straightforward relation between the power 
spectra and the stability of the system: the variance of the variation sequence equals 
the integrated over the frequency range power spectrum. 
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Figure 1 A time series in relative units of the catalyst bed temperature variation 

(K)  in the course of time (sec) at the oxidation of HCOOH 

 

 
Figure 2 A time series in relative units of the catalyst bed temperature variation 

(K)  in the course of time (sec) at the oxidation of HCOOH 
 

  In our case the power spectra of all 80 time series exhibit a persistent pres-

ence of a continuous band of the shape ( )1 f fα
 where ( )α f → 1 at f

T
→

1
 ( T  

is the length of the time series) and ( )α f  monotonically increase at f  increasing. 
The power spectra of the time series presented at Fig.1,2 are presented at Fig.3 and 
Fig.4 correspondingly. The gradual deviations of the power from α = 1 become visi-
ble at higher frequencies.  
 The persistent presence of a continuous band whose infrared edge uniformly 
fits the shape 1 f  is associated with the widespread yet enigmatic phenomenon called 
1 f noise.  
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Figure 3 The power spectrum in relative units of the time series presented in Fig.1 

 
 

 
Figure 4 The power spectrum in relative units of the time series presented in Fig.2 

 
 
1 f  Noise 
 The major characteristic of the 1 f noise is that the infrared edge of a power 
spectrum uniformly fits the shape 1 f . The fit does not depend on: (I) the incremental 
statistics, i.e. the details of the variation succession in a time series; (ii) the length of 
the time series; (iii) the nature of the system. The phenomenon is observed in a large 
variety of systems: quasar pulsations, meteorology, financial time series, music and 
speech etc.  
 One of its greatest controversies is how it is related to the long-term stability 
of a system: on the one hand the shape 1 f  of the power spectra makes the variance 
of the time series infinite. In turn, the infinite variance makes most probable fluctua-
tions large enough to carry the system beyond the thresholds of stability. Therefore, 
any system would blow up or get extinct in a finite time interval. However, it does not 
happen. Moreover, it is established that the 1 f  behavior is spanned over several 
dozens of order. Thus, it is rather to be associated with a long-term stability. 
 The revealing of the controversy is achieved by the use of the precise shape of 
the entire power spectrum, namely the shape ( )1 f fα mentioned in the Introduction 
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( ( )α f → 1 at f
T

→
1

 ( T  is the length of the time series) and ( )α f  monotonically 

increases at f  increasing. It has been proven [2] that this shape makes the variance 

finite. It has been verified that the shape ( )1 f fα is generic for the power spectrum of 
any bounded irregular sequence (BIS) regardless to the details of the incremental sta-
tistics. However, the boundedness of the fluctuations is straightforwardly related to the 
issue of stability. It implies that a system stays stable until the exerted fluctuations are 
bounded so that not to exceed the thresholds of stability. Thus, being a hallmark of the 
boundedness, the presence in a power spectrum of a continuous band that fits the 
shape ( )1 f fα  serves as a criterion for a long-term stability of the system. 
 Another controversy arises from the superimposing of the continuous band to 
a discrete one shown in Fig.4. The discrete band has the typical properties of a limit 
cycle. Thus, it originates from a system of ordinary differential equations. Then, it is 
to be expected that the macroscopic evolution of our catalytic reaction is given by a 
system of ordinary differential equations (ODE) set on the reaction mechanism. How-
ever, the solution of neither system of ODE can comprise both a discrete and continu-
ous band at the same time.  
 The mathematical analysis of the problem of the presence in the power spectra 
of a continuous band and its coexistence with a discrete one suggests that a successful 
solution is brought about by permanent, persistent at every parameter choice, bounded 
variations of the adsorption and/or reaction rates.  
 Recently one of us has put forth a mechanism [4] that couples certain type of 
local fluctuations that occur at every surface at each parameter choice. Its distinctive 
property is that it produces variations of the adsorption and reaction rates with the de-
sired properties. The importance of this mechanism is revealed in its universality: it is 
insensitive to the details of the reaction mechanism and the surface properties. Fur-
thermore, the local fluctuations that it couples are inevitable for the surface reactions 
exposed to a steady flow of the reactants. 
 
Diffusion-Induced Noise 
 The task of this section is to elucidate the inevitability and ubiquity of the 
presence of certain type local fluctuations. Their driving mechanism has been recently 
introduced [2,3] and has been called diffusion-induced noise. It is presented for the 
adsorption, since it is a step prerequisite of any surface reaction at each parameter 
choice. The mechanism is based on the interplay between: (I) the lack of correlation 
between moments and points of the gas phase species trapping at the surface; (ii) the 
generic property of any adlayer that no more than one species can be adsorbed at a 
single active site. That interplay causes fundamental changes of the properties of the 
overall probability for adsorption. Given is a species trapped in a vacant site. Its fur-
ther relaxation to the ground state can be interrupted by an adspecies that arrives at the 
same site and most probably occupies it. Thus the adspecies violates the further 
trapped species relaxation at that site, since no more than one species can be adsorbed 
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at a single site. The trapped species can complete the adsorption if and only if after 
migration it finds another vacant site. The impact of the adspecies intervention to the 
trapped species probability for adsorption is twofold: first, it cannot be considered as a 
perturbation, since it changes the adsorption potential qualitatively, namely from at-
tractive it becomes repulsive. That is why, that type of interaction has been called dif-
fusion-induced non-perturbative interaction. Second, the lack of coherence between 
the trapping moment and the moment of adspecies arrival makes the probability for 
adsorption multi-valued function: each selection corresponds to a certain level of re-
laxation at which a diffusion-induced non-perturbative interaction happens. Therefore, 
the adspecies mobility brings about fundamental duality of the probability for adsorp-
tion (and of the adsorption rate correspondingly): though each selection can be com-
puted at microlevel, the establishing of a given selection is a stochastic process since it 
is a random choice of a single selection among all available. 
 Evidently, the driving mechanism is insensitive to the details of the adsorption 
Hamiltonian, the adspecies spatio-temporal configuration, the details of the reaction 
mechanism and the parameter choice. This broad insensitivity provides its inevitability 
and ubiquity. 
 Since the diffusion-induced non-perturbative interactions are local events, the 
non-correlated mobility of the adspecies produces a lack of correlation between the 
established selections at any distance and at any instant. As a result, the produced ad-
layer would be always spatially non-homogeneous even in the academic case of iden-
tical adsorption and mobility properties of all types of adspecies. Outlining, the non-
correlated diffusion-induced non-perturbative interactions always make the adsorption 
rates that come from different adsorption sites non-identical that immediately yields 
spatial non-homogeneity. Furthermore, the induced non-homogeneity would be per-
manently sustained by the lack of coherence between the trapping moments and the 
adspecies mobility. In turn, the adlayer configuration would vary in uncontrolled way 
which in a short time would cause either the reaction termination or the system break-
down. Thus, a stable long-term evolution is available if and only if there is a mecha-
nism that suppresses the induced non-homogeneity. A mechanism that removes the 
induced non-homogeneity through a feedback that couples the local fluctuations has 
been introduced in [4].   
 The outcome of the synchronization is that at any instant the global adsorption 
rate is always identical to the individual adsorption rate that comes from certain local 
configuration. It is verified that the feedback always selects that individual adsoprtion 
rate which currently is in the most favourable local configuration: such that the differ-
ence in the state of that species and its immediate neighbours is the smallest. This, in 
turn makes the global rate a multi-valued function at each value of the control parame-
ters. The stochastic behavior appears from the permanent random choice among selec-
tions because only one selection takes place at every instant. Therefore the macro-
scopic kinetic equations read: 

( ) ( ) ( ) ( )dX
dt

A X R X X Xai ri= − + −α β αµ βµdet det     (1) 
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where  and  are the mean values of the adsorption and reaction rates 

at given parameter choice 

( )A Xav ( )R Xav

α  and β ; ( ) ( ) (µ ai avX A X A X )= −  and 

( ) ( ) ( )µ ri avX R X R X= − ; ( )A X  and ( )R X  are the adsorption and reaction rates. 

It should be stressed that at any instant each component of ( )A X  and  is a se-

lection randomly chosen among all available. Then, in the course of the time  

and  appear as successive terms of corresponding zero-mean bounded irregu-

lar sequence (BIS). The subscript  serves to stress that only one selection, randomly 
chosen among all available, takes place at a given instant. 

( )R X

( )µ ai X

( )µ ri X
i

( )µ ai X  and  has a 

Markovian property in the sense that the probability for occurrence of a given selec-
tion does not depend on the probability for the appearance of any selection at the pre-
vious instant.  

( )µ ri X

 A representative property of the eqs.(1), figured out in [2], is that at each pa-
rameter choice the power spectrum of its solution ( )X t  comprises additively two 

parts. The first one is the power spectrum of Xdet  settled by the following equations: 

( ) (dX
dt

A X R X )det
det det det det= −α β       (2) 

The second part is the power spectrum of the zero-mean BIS resoluted by the varia-
tions of . Next in [2] it has been proven that the power spectrum of any 

zero-mean BIS is a continuous band that fits the shape 

( )(X t X− det )
( )1 f fα , where ( )α f → 1 at 

f T→ 1  ( T  is the length of the sequence) and ( )α f  monotonically increases to 
p > 2  at f →∞ . This shape is insensitive to the details of the incremental statistics. 

In our case, this implies that the shape ( )1 f fα is robust to the particularities of the 

adsorption and reaction mechanism involved in ( )µ ai X  and ( )µ ri X . So, a continu-

ous band of the shape ( )1 f fα exhibits a persistent presence at each parameter choice. 
 To outline, the separation of the power spectrum into two parts is robust to the 
particularities of r.h.s. of eqs.(1). Thus, in particular, it is robust to the details of the 
reaction mechanism. 
 
Large-Scaled Fluctuations in the Course of Time 
 So far, the evolution of the catalytic reactions is described by systems of ordi-
nary or partial differential equations of the type of eqs.(2). They define the bifurcation 
diagram. As a result, the temporal evolution should be steady and the dynamical re-
gime would remain unchanged in the course of time. However, the interplay between 
the determinism of eqs. (2) and the fluctuations in eqs.(1) causes permanent deviations 
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from any dynamical regime prescribed by eqs.(2). Formally, any difference 
 can effectively be presented as the solution of eq.(2) at “shifted” con-

trol parameters. The latter immediately causes change either of the characteristics of 
the dynamical regime or it even induces change of the type of the dynamical regime. It 
is obvious that any induced bifurcation needs a fluctuation of certain size. Thus, the 
problem about the frequency for occurrence of a fluctuation of a given size becomes 
crucial for the induced bifurcations. Recently we have found out explicitly the fre-
quencies of appearance of a fluctuation of a given size and duration [5]. More pre-
cisely, we have found out the relations size

( )(X t X− det )

↔duration and frequency of appear-
ance size. It turns out that the boundedness makes each fluctuation to be loaded in 
an embedding interval so that no other fluctuation appears in that interval. Thus the 
successive fluctuations are well separated one from another. 

↔

 Another prominent result of our considerations [5] is that the fluctuations 
could be separated into two major classes: reaction-sensitive and universal. The rela-
tion size duration of the former ones depends on the reaction mechanism. On the 
contrary, all the features of the universal fluctuations are insensitive to the details of 
the reaction mechanism and the catalyst properties.  

↔

 
Figure 5 The second part of the time series presented in Fig.2 

 
 Next, an example that the large fluctuations indeed induce an effective “shift” 
of the control parameters is presented. One of our time series is divided into 2 equal 
parts: the first one is presented at Fig.2 and the second one at Fig. 5. The latter com-
prises a fluctuation as large as 50% of the average. Its power spectrum is presented at 
Fig.6. 
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Figure 6 The power spectrum in relative units of the time series presented in Fig.5 

 
The comparison between the power spectra at Fig.4 and Fig.6 reveals the typical prop-
erty of a limit cycle: strong sensitivity of the amplitude to the control parameter values 
while the period remains robust to them. The amplitude of the limit cycle at Fig.6 is 10 
times less than that in Fig.4. Thus, indeed, the presence of a large fluctuation effec-
tively “shifts” the control parameters. 
 
Conclusions 
 The relation between the boundedness of the fluctuations and the presence at 
the power spectra of a continuous band that fits the shape ( )1 f fα makes the observa-
tion of such band criterion for a stable long-term evolution. The ubiquity of the fluc-
tuations produced by the diffusion-induced noise makes this criterion available for all 
the surface reactions.  
 Another problem posed by the fluctuations produced by the diffusion-induced 
noise is that they can change the dynamical regime in the course of time even when 
the control parameters and the catalyst properties remain steady. This gives rise to the 
question about the most appropriate feedback in order to control the temporal behavior 
of the industrial catalytic reactions. 
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Abstract 
 Since the discovery of the classical Belousov-Zhabotinsky (BZ) reaction (sub-
strate: malonic acid, catalyst: cerium) the mechanism of this oscillatory reaction is the 
subject of intense research. Here we review the suggested mechanisms including the 
latest developments which point to the role of an intermediate, namely oxalic acid.  
 The first detailed mechanism, the Field-Kőrös-Noyes (FKN) theory (1972) and 
the Oregonator model (1974) was based on a negative feedback loop via bromide ion 
but neglected another negative feedback loop via organic free radicals. Discovery of 
this second feedback loop in 1989 led to the Radicalator model proposed by Förster-
ling and co-workers.  
 The next model by Györgyi, Turányi and Field (GTF 1990) included many re-
actions of the organic free radicals but in the absence of an appropriate analytical 
technique many of the reaction routes were hypothetical. In the following decade 
many new reaction routes and intermediates were discovered with the aid of high per-
formance liquid chromatography (HPLC). Among others it was realized that organic 
free radicals do not disproportionate as it was assumed originally by FKN and GTF 
but they recombine. For example the reaction products of two malonyl radicals are not 
malonic and tartronic acids but ethane-tetracarboxylic acid (ETA) and malonyl malo-
nate (MAMA).  
 The new Marburg-Budapest-Missoula (MBM) model suggested in 2001 in-
cluded both negative feedback loops (bromous acid - bromide ion Oregonator type and 
bromine dioxide - organic free radicals Radicalator type feedback) and also the radical 
- radical recombination reactions. Simulation of experiments with the MBM model 
gave a good qualitative agreement but various open problems still remained. One of 
these was the role of oxalic acid, an intermediate found by HPLC both in the induction 
period and in the oscillatory regime of the classical BZ reaction. 
 Here we present perturbation experiments of the classical BZ reaction where the 
perturbant is oxalic acid. The experiments show that the oxalic acid intermediate plays 
an important role in the mechanism of the classical BZ reaction, a role which was not 
taken into account in the previous model calculations. To discover this role we suggest 
mechanistic investigations on a more simple BZ oscillator with oxalic acid as the only 
substrate.  
 
Introduction 
 The classical Belousov[1]-Zhabotinsky[2] (BZ) reaction, the cerium ion cata-
lysed oxidation and bromination of malonic acid by acidic bromate, is the most stud-
ied chemical oscillator and a prime example for both temporal and spatial nonlinear 
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phenomena in chemistry [3-6]. In spite of that, due to the complexity of the so-called 
organic reaction subset, there are still important processes, which are not known or at 
least not well understood. The best way to understand the nature of these problems is 
if we regard the various mechanisms suggested for this oscillatory reaction. 
 
Three early mechanisms of the BZ reaction 
The FKN mechanism and bromide controlled oscillations 
  The basic mechanism of the BZ reaction was elucidated in 1972 by Field, 
Kőrös and Noyes [7] (FKN). According to the FKN theory oscillations are due to an 
interplay of a positive and a delayed negative feedback loop. The positive feedback is 
the autocatalytic bromous acid and bromine dioxide production in the course of the 
oxidation of Ce3+ to Ce4+ by acidic bromate. The first step in the negative feedback is 
the bromide ion generation by Ce4+ in a reaction with bromomalonic acid. Bromide ion 
then reacts rapidly with bromous acid which is an autocatalytic intermediate. This way 
bromide ion controls switches between an oxidized and a reduced state. When the 
bromide level is high the system stays in the reduced state and the Ce4+ concentration 
is gradually decreasing. In this reduced state the bromide concentration is also de-
creasing as it reacts with bromate in the acidic medium. (Hypobromous acid and bro-
mine produced in the latter reaction brominate malonic acid.) The reduced state be-
comes unstable when [Br-] falls below a critical value allowing the autocatalytic reac-
tion to take over. In the resulting new oxidized state the Ce4+ concentration and the 
intensity of bromide ion generation grows rapidly up to a point when the autocatalytic 
reaction is extinguished. Then [Br-] jumps to a high level again and the cycle resumes. 
The FKN mechanism is thus referred to as bromide controlled. The mechanism was 
generally accepted and its simplified version, the Oregonator [8] was applied success-
fully to model oscillations and other nonlinear phenomena in the BZ reaction. Actu-
ally, the system of the inorganic reactions (the “inorganic subset”) - after a revision of 
its rate constants [9-11] - is still used basically in the same form as it was suggested by 
FKN. Changes were necessary in the organic subset, however, because it turned out 
that organic free radicals (like malonyl radicals for example) play a more important 
role than it was originally suspected.  
 

The Radicalator and non-bromide controlled oscillations 
  Bromide ion plays the role of a control intermediate because it reacts rapidly 
with the autocatalytic intermediate HBrO2. Beside bromous acid bromine dioxide 
radical is also a part of the autocatalytic cycle consequently any intermediate reacting 
with BrO2 can also act as a control intermediate. It was Brusa et al. [12] who sug-
gested first that malonyl radicals could replace bromide if they were able to react ei-
ther with bromous acid or bromine dioxide. In 1989 Försterling and Noszticzius13 
reported that malonyl radicals react with bromine dioxide at a diffusion controlled 
rate. Thus an additional negative feedback loop was discovered in the BZ reaction. 
Initially it was not clear whether this second feedback alone is also able to control the 
oscillations. This possibility was demonstrated soon by Försterling et al. [14] who 
found non-bromide controlled oscillations in the so-called Rácz  system [15]. They 
also suggested a new mechanistic model, the Radicalator, in which malonyl radical 
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plays the role of the control intermediate. The same model was applied successfully to 
explain certain stirring effects of the BZ reaction [16].  
 

The Györgyi-Turányi-Field (GTF) mechanism 
 The next important development in the theory of the BZ reaction was the 
mechanism proposed by Györgyi, Turányi and Field [17,18] in 1990 and 1993. The 
GTF mechanism aimed to incorporate all the experimental information available at 
that time. It contains 26 variable species and 80 elementary reactions. GTF assumed 
that organic free radicals, when they react with each other, disproportionate rather than 
recombine. (As they wrote they continued this assumption of the FKN mechanism 
“reluctantly” because no direct experimental evidence was available at that time.) For 
example malonyl radicals disproportionate according to reaction 41 in their scheme: 
  2 MA •  + H2O → MA + TA  (GTF 41) 
Here MA and TA stand for malonic and tartronic (hydroxymalonic) acids and MA •  
denotes a malonyl radical. In their second paper [18] GTF added the hydrolysis reac-
tion of BrMA •  (bromomalonyl radical) to their scheme: 
  BrMA  + H• 2O → TA •  + Br- + H+ (GTF 84) 
as an additional  bromide source. (It is a prerequisite to obtain enough bromide for an 
effective negative feedback for oscillations. Not enough bromide is a usual problem of 
the various models.) Another new source of bromide ions in the GTF mechanism is 
the reduction of bromomalonic acid by carboxyl radicals: 
  BrMA + COOH  → Br• - + MA •  + CO2  (GTF 71)  
 Finally we mention a serious problem of the GTF mechanism: while it repro-
duces Ce4+ oscillations with high fidelity if the initial substrate is malonic acid the 
model fails to oscillate with pure bromomalonic acid as initial substrate in a parameter 
range where oscillations with such a substrate are observed experimentally. 

 
Identification of Organic Intermediates  
with HPLC Measurements and the MBM Mechanism 
 In the times when the FKN mechanism was proposed modern analytical tech-
niques (like NMR and HPLC) were not widely available thus it was not possible to 
test the presence of the hypothetical organic intermediates experimentally. This situa-
tion was changed fundamentally in the last decade and, in 1994, a systematic program 
was initiated in Marburg applying mostly HPLC to identify various organic products 
and intermediates of the BZ reaction [19-23]. 
 

HPLC of the organic subsystems 
 The research was started with HPLC studies on the products of the Ce4+ - malo-
nic acid and the Ce4+ - bromomalonic acid reactions. These organic subsystem studies 
have shown that the primary organic radicals do not disproportionate but recombine. 
In the case of malonic acid radicals the recombination products are ethanetetracarbox-
ylic acid (ETA) [19]: 
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and malonyl malonate (MAMA) [20]: 
 

 
 

 
 
because the malonic acid radical is capable of mesomerism [24]. When bromomalonyl 
radicals react with each other the final product is bromoethenetricarboxylic acid 
(BrEETRA) [21]. The first step is again a recombination of two alkyl bromomalonyl 
radicals then the produced dibromo ETA decarboxylates: 
 

 
and looses a HBr to form the final product BrEETRA: 
 

 
 
It is also important to mention here that no tartronic acid was found in the Ce4+ - 
bromomalonic acid reaction thus GTF 84, the proposed hydrolysis of bromomalonyl 
radicals, cannot play a role in the mechanism.  
 
HPLC of complete BZ systems in the induction period 
 The next step was to study the reaction products of a complete BZ system but first 
only in its induction period [23]. The induction period was chosen for two reasons: 
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i) Complications due to reactions of organic substrates other than malonic acid were 
hoped to be less serious in this period especially when a higher than normal initial 
malonic acid concentration is applied.  
 

ii) In the induction period the BZ system is in its oxidized state and this period lasts 
much longer than the oxidized state of a single oscillation. In the oxidized state the 
autocatalytic reaction is “switched on” establishing a relatively high BrO2 level. As it 
is known [13] BrO2 radicals react with malonyl radicals in a fast, diffusion controlled 
way, thus the already studied self-recombination routes leading to ETA and MAMA 
are suppressed.  
 
 In the experiment, to enhance concentrations of intermediates appearing in the 
BrO2 radical - malonyl radical reaction, higher than normal initial catalyst concentra-
tion was applied ([Ce4+]0 = 5x10-3 M). The presence of oxalic acid was proven combin-
ing HPLC with various tests. Beside oxalic acid another new intermediate, ethenetet-
racarboxylic acid (EETA) was also identified. 
  

HPLC  analysis during oscillations and the MBM mechanism [25]
 HPLC analysis of cerium and ferroin catalysed batch BZ systems were per-
formed in their oscillatory regime [25]. Batch reactor experiments were chosen be-
cause accumulation of certain intermediates can be monitored this way. As oxygen has 
a dramatic effect on the BZ reaction [26] due to its fast reaction with the organic free 
radicals27,28 all experiments were carried out in a nitrogen atmosphere. Higher than 
normal catalyst concentration (5x10-3 M) was applied to produce elevated intermediate 
concentrations and to accelerate consumption of the organic substrate. This way the 
oscillatory regime and consequently the length of the experiment was shortened.  

HPLC analysis revealed important differences between the cerium and ferroin 
catalysed systems. No recombination products of malonyl radicals were found in the 
ferroin systems showing that a direct reaction between ferriin and malonic acid does 
not occur or it is negligible. In spite of that ferroin catalysed oscillations start immedi-
ately without any induction period even if the substrate is pure malonic acid. This is 
not the case in cerium systems. Also the ferroin catalysed system contains much more 
oxalic and mesoxalic acid than the cerium catalysed one. 

After collecting all the available experimental data for the Ce4+ catalysed sys-
tem, we performed calculations with a revised and updated GTF model which is re-
ferred to as Marburg-Budapest-Missoula (MBM) model. 
 

Model calculations with the MBM mechanism [25]
 Due to the differences between the cerium and ferroin systems the MBM model 
was applied to the cerium catalysed BZ oscillators exclusively. 
  At low catalyst concentrations there was a good agreement between the model 
and experiments regarding only the Ce4+ oscillations. In a next step calculated concen-
tration-time diagrams were compared with the experimental ones for various compo-
nents measured with HPLC in a BZ system with a higher Ce4+ concentration. In this 
case a qualitative agreement was found for many components but serious disagree-
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ments were also detected. For example the model seriously overestimates tartronic 
acid and underestimates BrEETRA.  
 Another important question which remained open is the role of oxalic acid. Ox-
alic acid is a product of the autocatalytic regime. Most probably it is produced from 
mesoxalic acid. Mesoxalic acid is a decomposition product of malonyl bromite. Malo-
nyl bromite is produced when malonyl and bromine dioxide radicals recombine in the 
autocatalytic regime.  
 

The effect of oxalic acid on the classical BZ reaction 
A main question is whether oxalic acid has a significant impact on the dynamics or 

not. Looking for an answer we perturbed the BZ reaction by adding some oxalic acid 
to it. As in a recent paper [29] we studied the effect of methanol on the BZ reaction it 
was reasonable to compare the effect of the two perturbants and to perform perturba-
tion experiments with the same BZ system but applying oxalic acid instead of metha-
nol. (BZ systems are rather sensitive to methanol perturbations. This is because that 
perturbant reacts with acidic bromate in a direct reaction to yield bromous acid which 
is the autocatalytic intermediate of the BZ reaction.) Our results are shown in Figure 1. 

The result suggested that oxalic acid can be an even more effective perturbant than 
methanol and most probably its direct reaction with acidic bromate is also faster than 
that of the other perturbant. Unlike methanol, however, oxalic acid in a BZ system can 
participate in other significant reactions as well. Thus if we want to understand the 
role of oxalic acid in the classical BZ reaction it is a prerequisite to know all of its 
significant reactions in a BZ system. To this end, however, the best possible test 
ground is not the classical BZ system with all the complex organic chemistry of malo-
nic acid but the more simple BZ oscillator with oxalic acid substrate. 

Figure 1. Perturbation of a BZ system with oxalic acid at t = 6000 s. CO2 evolution 
rate. [MA]= 10 mM, [BrO3

-]= 30 mM, [Ce4+]= 0,4 mM, [H2SO4]=  1 M, [OA]= ~ 1 mM 
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Previous research with the oxalic acid oscillators 
Experimental studies 

The BZ reaction of oxalic acid is well known [30,31], it was discovered [30] al-
ready in 1979. Oscillations with this substrate can be observed when a stream of inert 
gas (like N2 or H2) is bubbled through the reaction mixture. The role of this inert gas 
stream is to remove the dissolved Br2 produced in the reaction. This way semi-batch 
experiments (applying a batch reactor with product removal) were performed where 
the flow rate of the inert gas stream played the role of a dynamical parameter [32]. 
Gáspár and Galambosi [33] performed CSTR experiments without any gas stream: in 
that case it was the liquid flow of the CSTR which removed the produced bromine. 
Another possibility for bromine removal is to apply a second substrate beside oxalic 
acid like acetone, which can be brominated [34]. Such mixed substrate systems can 
exhibit various interesting dynamical phenomena already in a batch reactor and were 
studied by many authors, see e.g. Refs. 35-36. 

 

Model calculations 
In spite of the relative simplicity of the oxalic acid substrate system there are only 

few model calculations in the literature [33, 37-40]. The first attempt was made by 
Bódiss and Field [37] who suggested that the system is a so-called bromine hydrolysis 
controlled (BHC) oscillator. According to that model the source of bromide ions is the 
hydrolysis of bromine. The idea of bromine hydrolysis control was also applied in 
Field and Boyd (FB) [38] in the simulation of the oxalic acid - acetone mixed substrate 
oscillator. All models were reviewed critically by Ševčik and Hlaváčová [39] who also 
suggested a new model with an optimum combination of the above reactions and rate 
constants [40]. However, it was a general conclusion of these studies that while all the 
various models were able to oscillate in certain parameter ranges all of them had diffi-
culties in explaining some of the experiments. 

 
Conclusion: reasons to reinvestigate the oxalic acid oscillator 

Beside the above mentioned difficulties of the various models there are other 
reasons which support that it is worthwhile to reinvestigate the BZ system with oxalic 
acid substrate by performing new experiments and model calculations. The following 
arguments can be mentioned:  
i) Some of the earlier model calculations [33,37,38] were made with an old set of rate 

constants, which were later revised by Field and Försterling [11]. There were some 
further changes since then (see e.g. the MBM mechanism [25]). Nowadays, how-
ever, most of the reactions and the rate constants of the inorganic subset of the BZ 
reaction are well established and these data can be applied in the modelling of the 
oxalic acid oscillator, too.  

ii) Most of these rate constants, however, were measured in 1 M sulphuric acid and at 
20 °C while previous experiments with the oxalic acid oscillator were performed 
mainly in 1.5 M sulphuric acid and at laboratory temperature (around 25 °C). Thus 
it seems reasonable to repeat the oxalic acid experiments in 1 M sulphuric acid and 
at 20 °C before comparing the experimental observations with model calculations. 
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iii) The mechanism of this simple BZ oscillator contains only two organic reactants, 
namely oxalic acid and carboxyl radical but the information available about the 
rate constants of their reactions with the bromine species is limited.  
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Abstract 
The oxidation of iodine by hydrogen peroxide is a part of the Bray-Liebhafsky oscil-
lating reaction. In this work, we compare the experimental kinetics of this oxidation at 
25 °C with the predictions of the model we have proposed to explain the oscillations. 
Several rate constants are obtained from independent kinetics and thermodynamics 
studies. With these constraints, the simplified form of our model is insufficient to ex-
plain quantitatively all the experimental results. We show that with the additional reac-
tion 2 IO2H  IOH + IO3

- + H+ the agreement becomes excellent. 
 

The Oxidation of Iodine by Hydrogen Peroxide 
The Bray-Liebhafsky (BL) reaction [1-5] is the decomposition of hydrogen peroxide 
catalysed by iodate and iodine in acidic solutions. The global reaction 
 2 H2O2 → 2 H2O + O2

is the result of the reduction (R) of iodate to iodine and the oxidation (O) of iodine to 
iodate. 
 2 IO3

- + 2 H+ + 5 H2O2 → I2 + 5 O2 + 6 H2O (R) 
 I2 + 5 H2O2 → 2 IO3

- + 2 H+ + 4 H2O (O) 
These reactions are complex and their mechanisms involve several intermediates, es-
pecially iodide and hypoiodous acid. The kinetics of reaction (R) is closely related to 
the kinetics of the Dushman reaction [6] 
 IO3

- + 5 I- + 6 H+ → 3 I2 + 3 H2O (D) 
We have studied the kinetics of reaction (O) previously [7] and summarize here its 
main features. The first surprising observation is the need of some iodate, a reaction 
product, to start reaction (O). After it has started, iodate has usually no effect on the 
rate. The second surprising observation is its rate decreasing when the concentration of 
the reactant H2O2 increases. Fig.1 shows examples of results obtained using the ex-
perimental technique described previously [7]. Under the conditions of experiment (a), 
the rate of reaction seems to be proportional to [I2]. However, if we increase the con-
centration of hydrogen peroxide it appears that there is no simple rate law. Experiment 
(b) was performed under the same conditions as experiment (a) except a much larger 
hydrogen peroxide concentration. The rate is smaller and the iodine concentration 
does not tend to zero at the end of the experiments. At still higher hydrogen peroxide 
concentrations it is impossible to observe the reaction (O). The effect of the acidity is 
neither simple. Experiment (c) shows that when the acidity decreases the initial rate 
decreases. It shows also that at low acidities, as at high hydrogen peroxide concentra-
tions, the iodine concentration does not tend to zero. At still lower acidities, reaction 
(O) is preceded by an induction period or never starts. 
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Figure 1. Log [I2] vs. time at 25°C; [I2]o = 6×10-4 M; [NaIO3] = 0.01 M;  

[H2O2] = 0.01 M (a, c, d), 0.20 M (b);  
[HClO4] = 0.10 M (a, b), 0.02 M (c), 0.40 M (d). 

 
Experiment (d) shows that the rate decreases also when the acidity increases. How-
ever, at high acidities, the rate remains proportional to [I2] and the iodine concentra-
tion tends to zero. The rate passes through a maximum under the conditions of ex-
periment (a) and decreases at lower or higher acidities but with different shapes of the 
curves log [I2] vs. time. 
 

Mechanism 
The general form of the model we have proposed [3] to explain the BL oscillations 
includes the reactions of iodine and its compounds constituting the mechanism of the 
Dushman reaction or its reverse reaction, the disproportionation of I(+1) [8], and the 
reactions of hydrogen peroxide with all these iodine compounds. The rate constants of 
many reactions of this general model are unknown and trying to adjust them empiri-
cally to experimental data would be a useless job, and by no mean a proof of the 
model. Thus, we have adopted a different approach. We start with a simplified form of 
the model and add other reactions only when they are necessary and experimentally 
justified. This simplified model includes reactions (M1-M5) in Table I. These reac-
tions are not elementary but reactions (M1) to (M4) have simple rate laws with orders 
equal to their stoichiometric coefficients. The detail mechanism of reaction (M5) has 
been discussed recently [8]. We must add to these reactions at least two reactions of 
hydrogen peroxide reactions, one where its acts as a reductant and one where it acts as 
an oxidant. The reduction (M6) is well known [9, 10]. The simplified form of our model 
rests on the observation that it is sufficient to add the oxidation (M7) to explain the main 
features of the BL reaction. Other reactions were considered previously and are ne-
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glected in this work. The oxidation of iodide by oxygen, reaction M8, was added to ex-
plain qualitatively that oxygen could sometimes modify the oscillations [11]. Its mecha-
nism is unknown and involves probably radicalar species. This is a disturbing phenome-
non, not related with the origin of the oscillations. The reduction of iodate by hydrogen 
peroxide, reaction (M9), was studied by Liebhafsky [12]. We suspect that its rate con-
stant is overestimated because reaction (M1) takes place simultaneously and increases 
the observed rate. The oxidation of iodous acid by hydrogen peroxide, IO2H + H2O2 → 
IO3

- + H+ + H2O, has been proposed previously [4] because it improves the simula-
tions of the oscillations at 50 °C but we have observed that it is detrimental to the 
simulation of reaction (O) kinetics. The effect of disproportionation (M10) is the sub-
ject of this work. 
 

Table I. Mechanism and rate constants. 
Reactions k°+

(a) k°-
(a)  

IO3
- + I- + 2 H+  I2O2 + H2O M1 and M2 replaced with A M1 

I2O2 + H2O   IOH + IO2H k°A = 4.5×103 k°-A = 240 M2 
IO2H + I- + H+  I2O + H2O 2.1×1010 2.1×10-2 M3 
I2O + H2O   2 IOH 100 1.2×105 M4 
IOH + I- + H+   I2 + H2O 2.3×109 1.2×10-3 M5(b)

IOH + H2O2  → I- + H+ + O2 + H2O 1.0  M6 
I2O + H2O2  → IOH + IO2H k7/k4 = 400  M7 
I- + H+ + ½ O2 → IOH neglected  M8 
IO3

- +  H+ + H2O2 → IO2H +O2 + H2O neglected  M9 
2 IO2H  IOH + IO3

- +  H+ 3.0×104 neglected M10 
 

(a) The superscript ° means values extrapolated at zero ionic strength. The units are mol.l-1 and s. 
(b) In acidic solutions r5 = k5(IOH)(I-) – k-5(I2)/(H+) [8] 
 
 In this section, we show how our model can qualitatively explain the experi-
mental results. Numerical simulations will be presented in section IV. The rate of reac-
tion (R) is the rate of iodine species reduction by hydrogen peroxide. Following the 
simplified model it is the rate of reaction (M6). The rate of reaction (O) is the rate of 
iodine species oxidation by hydrogen peroxide. Following the simplified model it is 
the rate of reaction (M7). When we observe only the catalytic decomposition of hy-
drogen peroxide, these two rates are equal. We call this state the catalytic steady state 
and note the corresponding iodine concentration [I2]ss. This state can be stable or un-
stable. When it is stable the system moves towards it. When it is unstable, the rates of 
the reactions (O) and (R) cannot become equal and we get a succession of periods R 
and O. During the periods R the rate of the reaction (R) is larger than the rate of reac-
tion (O) and the concentration of iodine increases. During the periods O the rate of the 
reaction (O) is larger than the rate of reaction (R) and the concentration of iodine de-
creases. We get the oscillatory decomposition of hydrogen peroxide. Fig.2 shows the 
shape of the trajectories predicted by the model, projected on the phase plane [IOH]-
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[I2]. When the catalytic steady state is stable the system follows the branch R or O 
until it is reached. If the iodine concentration is less than [I2]ss we get a period R, if it 
is higher than [I2]ss we get a period O. When the catalytic steady state is unstable, the 
system follows a limit cycle around it. Starting with no iodine, the system follows the 
branch R until point T1 is reached.  Then the system jumps on the branch O and the 
iodine concentration decreases. When it reaches point T2 the system jumps on branch 
R and this completes the cycle. If the initial concentration of iodine is larger than [I2] 
at point T1, the evolution is the same but starts with a period O. 
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Figure 2. Shape of the trajectories projected on the phase plane [IOH]-[I2]. 

 
During these evolutions, the measured rate d[I2]/dt is not equal to the rate of reaction 
(R) or reaction (O) but is equal to the difference between them. Noting ri the rate of 
reaction Mi, our model gives d[I2]/dt =(r6 - r7)/5. At the catalytic steady state r6 = r7 
and d[I2]/dt = 0. If we move away from the catalytic steady state, the absolute value of 
d[I2]/dt increases. If [I2] < [I2]ss it is positive giving a period R, if [I2] > [I2]ss it is nega-
tive giving a period O. We can now explain the above results obtained with a given 
initial concentration of iodine [I2]o ~ 6×10-4. The concentration [I2]ss depends on the 
experimental conditions. It increases when [IO3

-] decreases, when [H2O2] increases 
and when [H+] decreases. If [IO3

-] is too low, [I2]ss is higher than[I2]o and we get a 
period R. This explains why we must add the product iodate to start the reaction O. If 
[H2O2] increases from 0.01 M to 0.20 M (experiments a and b), [I2]ss increases. The 
difference [I2]o - [I2]ss decreases and this explains why the rate decreases. At too high 
hydrogen peroxide concentrations [I2]ss is higher than [I2]o and this explains why we 
cannot get a period O. The effect of a [H+] decrease is explained in a similar way. The 
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effect of a [H+] increase needs a different explanation. Under the conditions of ex-
periment (d), [I2]ss is very low. The rate is smaller than for experiment (a) because the 
rate of iodine hydrolysis r-5 is inversely proportional to [H+]. Under the conditions of 
experiment (a), reaction (M5) is nearly at equilibrium but this is no longer true under 
the conditions of experiment (d). At high acidities the hydrolysis of iodine tends to 
become the rate-determining step of the reaction (O). 
 
Studies of Iodine and Iodine Compounds Reactions 
 In order to validate our model we have looked for independent information 
about individual rate constants. Such information about the steps (M1)-(M4) is given 
by kinetic studies of iodine and iodine compounds reactions without hydrogen perox-
ide. In systems where (M1) and (M2) are the only reactions of I2O2, we can use the 
steady state approximation and replace them with reaction (A) = (M1) + (M2). 
 IO3

- + I- + 2 H+  IOH + IO2H (A) 
 kA = k1k2/(k-1 + k2)  k-A = k-1k-2/(k-1 + k2) 
The value of kA is the observed value of the rate constant of the Dushman reaction at low 
iodide concentrations ([I-] < 10-7 mol/l). We have obtained [13] kA = 1 250 mol-3.l3.s-1 at 
25°C and 0.2 M ionic strength. At this ionic strength the activity coefficient γ is about 
0.75 giving k°A= kA/γ4 = 4.0×103 in good agreement with Liebhafsky value [14] 
k°A = 4.7×103. For the reverse reaction Furrow [10] has obtained k-A ~ 240 mol-1.l.s-1, 
in rather good agreement with the results of Noszticzius [15]. In systems where (M3) 
and (M4) are the only reactions of I2O we can use the steady state approximation and 
replace them with (B) = (M3) + (M4). 
 IO2H + I- + H+  2 IOH (B) 
 kB = k3k4/(k-3 + k4)  k-B = k-3k-4/(k-3 + k4) 
The value of k-B is the observed value of the rate constant of IOH disproportionation. Our 
value at 25°C [8] is in perfect agreement with Furrow's value [10], k-B = 25 mol-1.l.s-1. 
 These experimental values can be correlated with the value of kB using criteria 
of internal consistency of reactions mechanisms [16]. Following the principle of de-
tailed balancing, when a reaction is at equilibrium the rate of every reaction in one 
direction must be equal to its rate in the opposite direction. On the other hand, thermo-
dynamics gives an expression relating the concentrations and the equilibrium constant 
K. In general, this thermodynamic expression give no information about the kinetics 
and the relation kf/kr = K between the rate constants in the forward and reverse direc-
tions, kf and kr, is not necessarily true for complex reactions. However, when the rate 
expression in one direction is known, the equivalence between the kinetic and thermo-
dynamic expressions of the equilibrium dictates the rate in the opposite direction. We 
know that r+A = kA(IO3

-)(I-)(H+)2. At equilibrium KA = (IO2H)(IOH)/(IO3
-)(I-)(H+)2 and 

r+A = r-A. Then r-A must be equal to k-A(IO2H)(IOH) with kA/k-A = KA. For reaction (B), we 
know that r-B = k-B (IOH)2. Then r+B must be equal to kB(IO2H)(I-)(H+) with kB/k-B = KB. 
The equilibrium constants of reactions (D) and (M5) are well known, K°D = 1.0×1047  
[17, 18] and 1/K°5 = 5.3×10-13  [8] at 25 °C. The superscript ° means values extrapo-
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lated at zero ionic strength. As (A) + (B) + 3 (M5) = (D), we get an important relation 
between the rate constants: 
 k°Ak°B/k°-Ak°-B = K°AK°B = K°D/(K°5)3 = 1.5×1010

The above values give K°A = 18, K°B = 8.3×108 and k°B = 25×8.3×108 = 
2.1×1010 mol-2.l2.s-1. This value is close to the value accepted to simulate numerically 
the kinetics of different systems involving reaction (B) [19, 20]. 
 
Numerical Simulations 
 In our kinetic study of reaction (O), we have expressed the measured rates 
using the parameter kexp, function of all the concentrations including [I2]. 
 kexp = (-d[I2]/dt)/[I2] 
Fig.3 shows some others experimental results. We have seen that our model can ex-
plain qualitatively that the rate decreases when [H2O2] increases. Here we propose a 
quantitative description. As we will add no other reactions of I2O2, we replace reac-
tions (M1) and (M2) with reaction (A) and use the above rate constants kA and k-A. 
During the disproportionation of IOH the rate determining step is (-M3)  [8] giving 
k4 >> k-3. This inequality is also supported by the very high value of k°B giving 
k°3 = 2.1×1010(1+ k-3/k4). Even if (M3) is not an elementary reaction, the value of k°3 
cannot be much larger than a diffusion controlled rate constant and (1+ k-3/k4) cannot be 
much larger than one. Thus, k°3 = 2.1×1010. Furrow [10] has obtained k6 = 3 ± 2 mol-1.l.s-1. 
The results of the simulations are improved taking its lowest value k6 = 1. For the sim-
plified model (M1)-(M7), it remains four unknown rate constants k-3, k4, k-4 and k7 
with a relation between them, k-3k-4/k4 = k-B = 25.  
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Figure 3. Values of kexp at 25°C if [KIO3] = 0.012, [HClO4] = 0.10, [I2] = 4×10-4 M; 
Experimental results (┼) and values calculated with the rate constants in Table 1 (──). 
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The value of k-3 has no effect on the numerical simulations as long as it is much 
smaller than k4. Finally, a sensitivity analysis shows that the calculated values of kexp 
depend on the ratio k7/k4 but not on their individual values and we are left with only 
two adjustable parameters k-4 and k7/k4. 
 We have tried to reproduce the experimental values of kexp using the simplified 
model but have found that, with the above rate constants, the calculated value of 
[IO2H] becomes always larger than 10-4 mol.l-1, the same order of magnitude as [I2]. 
As a consequence, the reaction begins with an induction period not observed under the 
conditions of Fig.3. We have thus considered different ways to decrease [IO2H]. We 
cannot suppose that the experimental value k-A = 240 is too low because if we increase 
k-A the above thermodynamic relation shows that we have also to increase k°3. A sig-
nificant lowering of [IO2H] implies k°3 values much too large for a diffusion con-
trolled reaction. Thus, we must add to reactions (M1)-(M7) a reaction of iodous acid 
producing iodate. The most obvious possibility is the reaction IO2H + H2O2 → IO3

- + 
+ H+ + H2O. However, its effect increases with [H2O2] in such a way that if we choose 
a rate constant giving correct calculated values when [H2O2] = 0.01 M, it becomes 
impossible to simulate the results at much higher hydrogen peroxide concentrations. 
Then, we have found that we can perfectly reproduce the experimental results adding 
reaction (M10). The results presented in Fig.3 where obtained adjusting only three 
parameters, k-4, k7/k4 and k10. The used values of the rate constants are given in table I 
but, in the limit of the experimental uncertainties, equally good fits could be obtained 
with different values and the change of one can be offset by the change of another. 
 
 Conclusion 
 Our model of the BL reaction gives an explanation of the complicated kinetic 
of the iodine oxidation by hydrogen peroxide. A quantitative agreement could be ob-
tained keeping only reactions (M1)-(M7) but with a value of k-A much higher than 
measured independently. The criterion of internal consistency of reaction mechanisms 
also sets bounds to the values of the rate constants. Therefore, we must add to the 
model another reaction of iodate formation from iodous acid. The reaction IO2H +  
+ H2O2 → IO3

- + H+ + H2O does not allow to simulate the experimental results but the 
additional reaction 2 IO2H  IOH + IO3

- + H+ gives excellent results. Other explana-
tions exist and works are in progress to decide between them. We must keep in mind 
that a mechanism can never be proved. It becomes only more and more likely as the 
number of facts supporting it increases. 
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Introduction 
Polymerization processes occupy the leading position in modern chemical technology, 
that stipulates the necessity of a comprehensive treatment of these processes on the mo-
lecular level. In this respect of considerable promise is the copolymerization of  types 
of monomers. Varying their initial stoichiometry and the process mode it is possible to 
govern physico-chemical and mechanical properties of a copolymer formed by mere 
change of its molecular characteristics. Special role is performed here by the multicom-
ponent (m ≥ 3) copolymers possessing unique potentialities in imparting a material pre-
pared on their basis a variety of properties inherent to the individual components. How-
ever, an empirical search for optimal conditions of obtaining of a polymer material with 
desired service properties by direct exhaustion of variants calls for an extensive routine 
experimental work which dramatically increases with the number of types of monomers 
involved. So, for overcoming the above difficulties it is critically important to elaborate 
approaches based on the mathematical modeling that enable one to predict theoretically 
some properties of multicomponent copolymers. The efficiency of such approaches for 
the prediction of the transparency and the thermostability of a number of particular ter-
polymers (m = 3) is conclusively shown [1,2]. 

m

 A considerable progress made in this field is largely due to two reasons. The 
first is the simplicity and the reliability of the mathematical models of the copolymeri-
zation, the values of the parameters of which have been experimentally found for an 
abundance of particular copolymerization processes [3,4]. The second reason is the 
fruitful engagement for the analysis of these nonlinear models of the methods of the 
theory of the dynamical systems [1,5-8]. The presentation reviews briefly the results 
achieved in this area, discussing both mathematical aspects of the problem and some 
applications of the theoretical results to the description of real polymer systems. 
 
Formulation of the Problem and Mathematical Model 
In order to conduct a copolymerization of monomers M1,…Mi,…Mm to their mixture 
an initiator is introduced. Its molecules decompose to form primary radicals capable 
upon reacting with monomers to initiate their subsequent addition. The succession of 
such acts results in the propagation of a polymer chain which bears resemblance to 
threading of beads (monomers) on string when making a necklace (copolymer macro-
molecule). The two growing macroradicals deactivate under chemical interaction of 
their reactive centers, that stops these chains’ propagation. 
 During the formation of each macromolecule the monomers’ concentration in 
a reaction system remains virtually unchanged. This permits one first to calculate all 
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statistical characteristics of a copolymer at a given monomer mixture composition 
x = (x1,…, xi,… xm) and then to average these “instantaneous” characteristics taking 
into account the evolution of  in the course of the process [1]. Such a two-stage cal-
culation procedure (when the statistical and dynamical problems of free-radical co-
polymerization are solved successively) is dictated by the specific nature of this proc-
ess and does not depend on the kinetic model chosen. The latter specifies just the ana-
lytic expression for the dependence of the “instantaneous” statistical characteristics on 

 and the kinetic parameters. 

x

x
 Such dependencies are well known for the Mayo-Lewis model [1] where the 
reactivity of polymer radical  is controlled by type R i 1, ,i m= …  of its terminal unit 
exclusively. It is characterized by m – 1 kinetic parameters ( )/ij ii ijr k k j i= ≠  each 
equal to the ratio of the rate constants of the addition of the “similar” Mi and “differ-
ent” Mj monomers. A complete set of such parameters for an m-component system 
consists of m(m – 1) reactivity ratios rij, each being determined in a standard way from 
the experiment on binary copolymerization of monomers Mi and Mj. The values of 
these parameters are tabulated for many hundreds of monomeric pairs [3], that enables 
one to carry out mathematical modeling of an immense number of multicomponent 
systems involving these pairs escaping additional routine experimental investigations. 
 The state of a reaction system at every instant of copolymerization, when the 
value of overall conversion of monomers is equal to p, is characterized by vector x(p) 
of the monomer mixture composition. The i-th component xi of this vector equals the 
molar fraction of monomer Mi in a mixture. The copolymer formed at this instant is 
described by vector of the ins tntaneous composition X(p) whose component Xi is the 
molar fraction of monomeric units Mi  in all macromolecules. 
 The evolution with conversion of m-component monomer mixture composition 
x(p) is depicted according to the condition 1 1mx x+ + ="  by a trajectory inside some 
bounded region of (m – 1) -dimensional space which is referred to as m-simplex. Under 
copolymerization of m = 2,3 and 4 monomers the phase space will be, respectively, an 
interval of a unit length, equilateral triangle and regular tetrahedron. In the analogous 
simplex the change of vector X occurs whose evolution unambiguously characterizes the 
distribution ( )Wf ζ  of macromolecules for their composition ζ . Vector ζ  has compo-

nents ( )1, , , ,i mζ ζ ζ… …  equal to molar fractions of monomeric units of all types in a 
macromolecule chosen at random. Evidently, this vector being averaged over the en-
semble of macromolecules formed under fixed conversion p′  yields vector ( )p′X . To 
find the composition of the copolymer present in a reaction system at given value p  the 
vector ( )p′X  should be averaged over all conversions p′  preceding p  

( ) ( )mipdpX
p

X
p

ii ,,1
1

0

…=′′= ∫      (1) 
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An analogous averaging should be also performed when calculating elements ijλ  of 

the covariance matrix of the composition distribution 

( ) ( ) pdXpXXpX
p jj

p

iiij ′−′−′= ∫ ][][1

0

λ      (2) 

through which the heat of the mixing of a copolymer melt is expressed in a simple 
manner [9]. Hence the application of the method of mathematical modeling opens up 
fresh opportunities for the prediction of the thermodynamic behavior of the copoly-
merization products. 

Under experimental examination of the composition inhomogeneity by the 
Liquid Gel-Chromatography technique they normally use a set of m one-dimensional 
distributions for each component [1,5,6] 

( ) ( mi
dp

dX
p

ζf
p X

i
iW

ii

,,11 1
…== ∑

′

−

=ζ
)     (3) 

where the summation is over all those values of conversion p′  at which iX  has fixed 
value iζ .  

The copolymerization dynamics is described by the set of equations [1,5-7] 

( ) ( ) ( ) ( )τπ
τ

−−===−= exp1,,1,0, 0 pmixxx
d
dx

iiii
i …x   (4) 

where every component ( )iπ x  of the composition vector ( )π x  is the ratio of the uni-
form polynomials in variables 1, , mx x…  of degree m. This polynomial coefficients de-
pend in a known way [1,6] on elements 1/ij ija r=  of matrix { }ija  of the reciprocal reac-

tivity ratios. Trajectories ( )px  completely describe the evolution of the instantaneous 
and average copolymer composition 

( ) ( )( ) ( ) ( ) 10 ]1[, −−−== ppxpxXppX iiiii xπ    (5) 
and, consequently, partial composition distributions (3). 
 To characterize the microstructure of the chains of a copolymer it is necessary 
to specify the fractions in them of all possible sequences { }kU  consisting of  units. 
The Nuclear Magnetic Resonance technique available currently permits finding the 
values of the fractions of these -ad up to 

k

k 5=k . When calculating them theoretically 
one should make use of the fact that the sequence distribution in macromolecules 
formed under any fixed conversion p′  is describable by the Markov chain. Its matrix 

 of the transition probabilities has elements Q

( ) ( ) ∑
=

==
m

j
jiji

i

jij
ij xa

xa

1
, x

x
σ

σ
ν       (6) 

 68



SELFORGANIZATION IN NONEQUILIBRIUM SYSTEMS  

where the dependence  on  may be determined from the solution of the set of equa-
tions (4). Given stationary vector  of matrix Q  one may immediately write down an 
expression for the instantaneous probability 

x p′
π

{ }kP U  of any sequence { }kU  of units in 
copolymer macromolecules. The subsequent averaging of these probabilities over con-
versions 0 p p′< <  enables the determination of average fractions of any k-ads. In par-

ticular, the fraction of the directed dyads { }2U  composed of units iM  and jM  is 
found by formula 

{ } pd
p

P ij

p

iji ′= ∫ νπ
0

1MM        (7) 

Hence it is clear that many statistical characteristics of the chemical structure 
of copolymerization products along with some of their important service properties are 
controlled by the dependence of the monomer mixture composition on conversion. 
This dependence ( )px  may be found analytically only for binary copolymerization, 
while for  equations (4) may be solved only numerically. However, the mathe-
matical analysis of these equations invoking the approaches of the theory of dynamical 
systems provides a possibility to reveal main qualitative peculiarities of the behavior 
of the trajectories 

3m ≥

( )px  and to perform the classification of copolymerization systems 
by types of their phase portraits. 
 
General Qualitative Analysis of Copolymerization Dynamics 
It was rigorously proved [6] that the nonlinear system (4) may have at any m no more 
than one stationary point (SP) *=x x  inside the m-simplex. Necessary and sufficient 
condition for the existence of such a stationary solution of equations (4) is the identi y o  
the signs of the determinants 

t f
( )1, ,iD i = … m  of all matrices obtained from matrix { }ija  

by virtue of the replacement of all elements of its i-th row by unity. The determinant D 
of matrix { }ija  will have therewith the same sign while the quantities /i iD Dω =  at all 

 will fall within the interval 01, ,i = … m 1iω< < . Given values of iω  one may deter-
mine SP , known as “azeotrop” [1,5], from the solution of the linear set of equations *x

( ) 1,,1
1

*

1

** === ∑∑
==

m

i
i

m

j
jijii xmixax …ω     (8) 

In parallel with such an internal azeotrop inside the m-simplex, there can also exist 
azeotrops located at its boundaries which are the n-simplexes with 2 1n m≤ ≤ − . Obvi-
ously, ( )m n−  components of vector  equal zero for each such boundary n-azeotrop, 
so it is an internal azeotrop in the system of the rest n monomers. Besides, the equations 
(4) always have m solutions 

*x

*
ix isδ=  (where isδ  stands for the Kronecker delta), each 

corresponding to the homopolymer of monomer ( )M 1, ,s s m= … . These solutions to-
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gether with all azeotrops located both inside an m-simplex and on its boundaries consti-
tute a complete set of SPs of the dynamical system (4). 
 Its qualitative analysis gives the possibility to establish types of these points pre-
determining the behavior of the trajectories ( )px  in the vicinity of such SPs as well as to 
reveal among them the stable ones. This is of practical importance since the trajectories 
approach only these points when . Each of them has its own basin of attraction, de-
fined as an area of all initial monomer mixture compositions x

1p →
0, having started at which 

the trajectories asymptotically tend to the SP in hand. Consequently, in accordance with 
the number of these stable points the whole m-simplex is divided into the same number of 
their basins. In line with the standard analysis the type of any SP of the dynamical system 
(4) may be defined by the set of the roots of the characteristic equation 

01
2

1
1 =+++ −

−−
m

mm αλαλ "       (9) 
with coefficients expressed in a known way through the reactivity ratios [1,5,6]. In order 
for any SP to be stable, all roots of its characteristic equation (9) should have negative 
real parts. Escaping the calculation of these roots, the Routh-Hurwitz method [10] per-
mits to indicate simple inequalities comprising coefficients αk whose fulfillment ensures 
the stability of an SP. The sufficient condition for an internal azeotrop in the m-simplex 
to be unstable is the presence of at least one stable SP in any of its apices [6]. 
 It is possible to carry out the classification of the dynamics of copolymeriza-
tion systems ranking them according to the topological kinds of their phase portraits. 
Each of them is specified by the types of all SPs and manifolds (such as separatrices or 
separatrix surfaces) which separate the basins of attraction of stable SPs. So, for binary 
copolymerization there are three kinds of phase portraits 
 
 

           (10) 
 

where open and filled circles denote the attractors and the repellers, respectively. For 
the realization of the phase portrait of kind III both kinetic parameters, a12 and a21, 
should be less than unity. Systems of such a kind are unknown so far. 
 An exhaustive classification of the phase portraits by their kinds was per-
formed [1,6] for the copolymerization of three monomers. Among 15 such portraits 12 
are simple in the sense that all attractors and repellers in them are SPs only. However, 
in the remaining three systems the boundary of the 3-simplex, i.e., the Gibbs triangle, 
is the separatrix contour. It contains three apices, each being the saddle point, and 
three sides that do not contain binary azeotrops. Such a contour attracts or repels tra-
jectories depending on whether the value of the quantity 

( )( )( ) ( )( )( )213213312312 111111 aaaaaa −−−+−−−=Λ              (11) 
is negative or positive. The sole SP inside the Gibbs triangle in the systems of these 
three kinds may be only the focus (or node). If at a certain change of the kinetic parame-
ters aij this SP remains unstable while the quantity Λ (11) reverses the sign from nega-
tive to positive, the “limit cycle birth” bifurcation takes place. It is intriguing enough that 
this cycle detaches from the separatrix contour rather than originates from the SP under 
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the change of its stability. Essentially, in this case the very conclusion on the existence 
of the phase portrait containing the limit cycle may be made directly from the topologi-
cal considerations without a recourse to the calculation of trajectories. 
 From the standpoint of the theory of dynamical systems of special interest is 
the copolymerization of four monomers when neither attractors nor repellers exist on 
the 4-simplex boundary. This means that all SPs of equations (4) located on the apices, 
edges and faces of a tetrahedron are saddle points. As for limit cycles on the tetrahe-
dron faces, they represent the saddle periodic motion, situated at the intersection of 
stable and unstable separatrix surfaces. The surface of the tetrahedron for this four-
component system will be in a sense similar to the separatrix contour lying on the 
sides of the triangle which is the phase space under the description of the terpolymeri-
zation dynamics. Just as in this case (m = 3) when a certain change of the kinetic pa-
rameters leads to the bifurcation of detaching of a stable limiting cycle from the sepa-
ratrix contour, so under tetrapolymerization the possibility for the “strange attractor” 
to detach from the surface of a tetrahedron is quite conceivable. Moreover, this bifur-
cation will necessarily take place provided simple stable manifolds like SPs, limit cy-
cles and invariant tori are absent inside the tetrahedron. 
 
Theoretical Prediction of Some Properties of Multicomponent Copolymers 
These properties may be effectively predicted using experimental data on binary sys-
tems only [1,2,5] instead of performing much tedious routine experimentation over 
entire range of composition of multicomponent systems. Employing these data as a 
starting information it is often possible to prognosticate in a simple way via mathe-
matical modeling some performance properties of multicomponent copolymers. In 
particular, this concerns their glass transition temperature Tg  which may be calculated 
through fractions of the dyads (7) for the products of copolymerization of an arbitrary 
number  of monomers at any their conversion p. m
 Along with the heat resistance of copolymers characterized by the value of  Tg 
their transparency is regarded to be one of the most important properties. In order to 
produce transparent copolymers their synthesis should be conducted so that a reaction 
system remains homophase throughout the whole process. A necessary condition for 
such a copolymerization regime is the minimality of the composition inhomogeneity 
of the products formed. However, in some copolymerization processes this condition 
may be violated because of the pronounced distinction in the reactivities of monomers 
involved. Copolymers formed during such processes may turn out to be so polydis-
perse in composition that the homogeneous state of a reaction system becomes ther-
modynamically unstable and it undergoes a phase transition. As a result turbid hetero-
phase polymer products with unacceptable physico-mechanical properties are ob-
tained. Essentially, in some copolymerization processes even a minor change of the 
initial monomer mixture composition x0 may dramatically affect the service properties 
of the products formed under high conversions. This is the case when the properties 
are compared of the copolymers prepared at values of x0 just slightly distinguishing 
from one another, but located within the basins of attraction of different attractors. 
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This effect is illustrated in Figure 1. It depicts the phase portrait of the three-
component system having three attractors situated in the apices of the Gibbs triangle. 
On its every side there is a single azeotrop, one being an unstable node while two oth-
ers are saddle points. These latter are connected with the former by separatrices sepa-
rating the basins of attraction of three stable SPs of this particular system. Three tra-
jectories depicted in Figure 1 start at points located close to each other, but terminate 
at different apices of the triangle. Evidently, both the composition distribution and the 
elements of its covariance matrix (2) (that control the thermodynamic behavior of the 
terpolymerization products being formed at the three given values of the initial 
monomer mixture composition) will differ substantially. The reason is that the afore-
mentioned characteristics of the chemical structure of a terpolymer specimen, formed 
at a given value of vector x0, are the functionals calculated at the trajectory x(p). 
 In order for the results of modern quantitative theory of copolymerization 
[1,5-8] to be used for the calculation of the statistical characteristics of multicompo-
nent copolymers  as well as for the prediction of such important properties as 
the thermostability and the transparency, we developed a user friendly computer pro-
gram “Copolymerization for Windows” [2,11]. Its potentialities are exemplified in 
detail for the terpolymerization of Styrene, Methyl methacrylate and Acrylonitrile [2]. 
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Figure 1. Phase portrait of dynamical system (4) describing the terpolymerization 
with the matrix of reactivity ratios {rij} for three values of initial composition of 
monomer mixture. Open, gray and filled circles indicate attractors, saddle points and 
repeller, respectively. 
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Abstract 
A numerical bifurcation analysis of a dynamical system modeling parasitoid evolution 
in a two-host-parasitoid system exhibits chaotic behavior, where we use the mutation 
rate as the bifurcation parameter. We illustrate this with some numerical experiments 
and provide a physical interpretation. 
 
Introduction 
One of the current challenges of evolutionary ecology is to identify those ecological 
mechanisms that lead to host specialization or changes in the host range of parasitoid 
populations. Parasitoids lay eggs in the bodies of other insects and, in order to reach 
adulthood, they have to kill their hosts. This inflicts strong selection pressure on the 
parasitoid population so as to evolve resistance to host defense mechanisms. For that 
reason, host-parasitoid systems provide a useful paradigm for more general evolution-
ary problems. 

In this paper we consider a parasitoid population exposed to two hosts and we 
study the evolution of the ability of the parasitoid to parasitize its hosts using a system 
of integro-difference equations or infinite-dimensional maps. Over the past century 
many mathematical models have been employed to study population dynamics of 
host-parasitoid interactions, as in [1] for example, however, there have been consid-
erably fewer attempts to include evolutionary dynamics in these models. 

Here, host-parasitoid dynamics are modeled using a variant of the well-known 
Nicholson-Bailey model [2], while genetic mutations are included through a dispersal 
kernel motivated by [3]. The key component of the evolutionary process is the exis-
tence of a trade-off, which represents a cost and benefit relationship associated with a 
change in the evolving trait. Specifically, we assume that an increase in the ability of 
the parasitoid to parasitize one host, will necessarily carry a cost in the form of a re-
duced ability to parasitize the other host.  

In order to scrutinize the consequences of introducing an evolutionary compo-
nent into a well-studied dynamical system, we use the mutation rate as our bifurcation 
parameter. This is simply the variance of the probability distribution that controls 
genotypic mutations and, surprisingly, altering this parameter leads to a regime in 
which a chaotic attractor forms. Very high or very low mutation rates lead to much 
simpler behaviors. 

To formulate a mathematical model of our problem we define the following 
variables:  denotes the density of parasitoids with genotype)(yPt y at generation t  
and denotes the density of host i at generation  (with itH t 2,1=i ). The evolving trait 
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is the probability that a parasitoid parasitizes host one and this is denoted , the 
unit interval, while the probability that a parasitoid parasitizes host two is denoted 
by . Here satisfies  and so represents a trade-off function. Once the host 
is parasitized, the parasitoid egg will complete its development in host i  with prob-
ability  (again, for ). The probability that a host escapes parasitism in the 

current generation is given by  where p is the parasitoid population size, 

Ω∈y

)(yf f 0<′f
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pe−
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and the fecundity of host i  is denoted by . This leads to the following discrete dy-
namical system 
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where pyPyP tt /)()( = . The function )( η−yk  represents a redistribution kernel as 
a function of η, and this is normally distributed about y with mutation rate (standard 
deviation) σ: 

2 2/ 2

2

1( ) .
2

yk y e σ

πσ
−=  

Hence )( η−yk  represents the probability of mutation of parasitoids from parent 
genotype η to offspring genotype y. Let us note that in previous work of this type [4,6] 
mutations are represented by a frequency-independent uniform distribution of geno-
types but this permits no control over mutation rates. 
 
Results and Discussion 
In Figure 1 we see the results obtained by iterating the dynamical system (1) as σ is 
varied. For large values of σ, we find the existence of a globally stable fixed point 
which, through a Neimark-Sacker bifurcation, sees the creation of an invariant circle 
in phase-space. As the error-rate is further reduced, the invariant circle becomes a two-
dimensional invariant torus which appears to collide with an unstable fixed-point, so 
forming a chaotic attractor. Finally, for very small error rates, this complex structure 
disappears to leave an invariant circle. 

It is well-known (see [4]) from the many studies of Nicholson-Bailey dynamics 
that non-evolutionary single-host, single-parasite systems may only exhibit growing  
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Figure 1.  Host one (horizontal axis) versus host two (vertical axis). From top left 

to bottom-right, σ = 0.14095, 0.088, 0.085, 0.08, 0.076, 0.073, 0.07, 0.06. 
 
oscillations of both species due to overexploitation of the host. We have observed that 
the inclusion of a second host coupled with an evolving parasitoid can stabilize this 
dynamic and provide a variety of different attractors. 

In terms of the genotypic structure of the parasitoids, Figure 2 shows that the 
genotypic distribution cycles from one form of near-specialism to another, as the rela-
tive frequency of the two hosts cycles. (By specialism we mean that a parasitoid is 
only virulent to one of the hosts.) For the simulations in this figure we have used the 
convex trade-off function f(y) = 1-y1/2. This was chosen because it was shown in [5] 
that the sign-changes of the second derivative of f govern the number of genotypes 
present. Although that work covers a continuous-time diffusion model, an asymptotic 
analysis shows that a similar dependence on the trade-off is present in solutions of (1). 
 
Conclusions 
We have demonstrated that the dynamics of host-parasitoid evolution are extremely 
sensitive to the manner in which mutations are introduced and it is possible to induce a 
range of dynamics by tuning the mutation rate alone. The stable behaviour of (1) for 
high mutation rates is to be anticipated from [4] and the references therein. However, 
for small mutation rates, a convex trade-off ensures that each host is successfully un-
der- then over-exploited as the convex trade-off leads to specialism in the short term 
[5]. The oscillations are less pronounced for concave trade-offs because specialization 
is not favoured in this case and one observes ESS-like behaviour. 
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Figure 2. Genotypic distribution of Parasitoid (y denotes genotype). 
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Dictyostelium discoideum: A BIOLOGICAL SYSTEM  
FOR INVESTIGATION OF NONLINEAR PHENOMENA. 
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Abstract 
Dictyostelium discoideum is shown to be an interesting system for investigation of 
how deterministic nonlinear processes apply in microorganism’s reproduction and 
morphogenesis. Quadratic autocatalysis, as a process characterizing multiplication of 
cells, is shown to result in propagation of a vegetative front through the lawn of bacte-
ria. Oscillatory and excitable modes of the biochemical production and degradation of 
cAMP by starving cells are shown to govern the time dependent emergence of aggre-
gation centres, propagation of cAMP waves and break of the cell layer down to aggre-
gation territories.  
 
Introduction 
Dictyostelium discoideum (DD) is a microorganism that represents a transition be-
tween uni- and multi-cellular organisms. DD spends the vegetative phase of its life as 
a uni-cellular organism. Each cell behaves independently, eating bacteria in the soil, 
growing and multiplying. When the bacteria are eaten up, the developmental cycle 
starts during which the cells behave as a community in order to form an organized, 
structured, multicellular organism –  a fruiting body carrying spores that preserve the 
DD’s life until the food sources are restored [1-3]. Presented paper will discuss some 
of the life stages of DD in more details emphasising the role of nonlinearities of bio-
chemical  transformations involved. 
 
Results  and  Discussion 
After adaptation and germination of spores on bacteria, DD cells reproduce by cell 
division giving two daughter cells out of one mother cell. Thus, formally, the 
exponential phase of growth can be described by quadratic autocatalytic reaction :  
 

                      B  +  D     2 D                                                                 (R1) 
where B stands for bacteria and D for DD cells. Time dependence of DD cells concen-
tration c is then governed by : 
 
                         [ ] 2ln⋅⋅=⋅=⋅⋅= rcckcBkdtdc B                                          (1) 
where kB is a rate constant of the pseudo-first order reaction R1 (assuming B to be in a 
great excess). Last product of Eq.(1) expresses the increase of cell concentration during 
the exponential phase in biological terms [4]: r is the inverse of the generation period tG 
defined as a time during which the number of cells doubles. Since the generation period 
of DD cells tG = 8 h, one can calculate the kinetic constant kB = 0.87 h-1.  
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When DD cells are grown on the lawn of bacteria they form a travelling front (cf. Fig. 
1) as any other quadratic autocatalysis does [5]. This front, containing vegetative cells 
in an exponential phase of their growth, is about 0.16 mm wide and propagates into 
the lawn of bacteria, leaving behind the environment free of bacteria but full of starv-
ing cells. The velocity of the vegetative front propagation is 0.08 mm h-1.  
 

 
 

Figure 1. The propagation of the vegetative front into the bacterial lawn. The size 
of the observation area is 1.8 x 2.3 mm. Experiments [6]. 

 

During developmental cycle, the biochemical production, release, and degradation of 
cAMP underlies processes such as propagation of cAMP waves and chemotaxis of 
cells towards mounds, cell sorting in mounds and slug migration. Dynamics of bio-
chemical transformations is studied in the mathematical model based on Martiel-
Goldbeter kinetic scheme [3,7]: 
 

βαγρσβ )(),,( T ti kkqdtd −−Φ=   (4) 
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In the kinetic model (4)-(6), β (γ) are concentrations of intracellular (extracellular) 
cAMP divided by the dissociation constant of the receptor-cAMP complex and ρT de-
notes the fraction of cell receptors in the active state to the total number of cell receptor. 
Other quantities in Eqs. (4)–(6) are parameters derived from kinetic constants, concen-
trations of (bio)chemical components in excess, and trans−membrane transport parame-
ters; all based on measured properties of cAMP biosynthesis in DD cells [7]. The model 
(4)-(6) enlarged for diffusion flux of cAMP in the extracellular space [8] forms a base of 
a mathematical description of the formation and propagation of cAMP waves in the DD 
cell population [8-11]. 
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Figure 2: Appearance of centers emitting cAMP waves and the break up of the cell 
layer into aggregation territories. Observation in the dark field. The size of the  
observed area: 10 x 11 mm.  cAMP waves, ○  boundaries of aggregation  

territories, ▫  centers emitting cAMP waves. Experiments [12]. 
 

Mathematical analysis of the model (4)-(6) has discovered a variety of solutions, in-
cluding two different stable stationary states, excitability, oscillations, bistability be-
tween two stationary states and bistability between oscillations and excitability [9-11]. 
These various dynamical modes of the biochemical transformations then display 
themselves during the developmental stages as shown, e.g. in Fig.2 illustrating the ag-
gregation stage of organism’s morphogenesis. 

At the beginning of starvation, DD cells undergo adaptation during which 
cAMP production (β,γ) is very low and the system stays in the stationary state. During 
this period, the cells migrate freely by the process resembling Brownian motion of 
molecules that leads to the homogenization of the cell layer. As time goes, the internal 
conditions (i.e. the parameters of the kinetic model (4)-(6)) of cells change and some 
cells adopt the oscillatory mode. These cells start to periodically produce cAMP that 
diffuses to the neigbouring cells. If the neighbours are in the excitable stationary state, 
cAMP waves can form and propagate through the cell layer (Fig. 2, t = 103 min). 
Head-on collisions of cAMP waves from different centres cause the break of the ho-
mogeneous cell layer down to individual aggregation territories (blue arrows in Fig. 
2). Further internal changes in cells bring slowly more cells into the oscillatory mode 
and new wave centres arise in the cell layer (Fig. 2, t = 180 min). The new centres 
elicit cAMP waves that upon head-on collisions cause further fragmentation of aggre-
gation territories. The fragmentation ensures the limited sizes of fruiting bodies com-
prising cells from one territory. 
 
Conclusions  
In this paper, we have discussed nonlinear features of complex processes taking place 
during the vegetative and aggregation stages of DD’s life cycle. We assume the ap-
proach outlined above can be conveniently used also in understanding and modelling 
the formation of more complex multicellular forms of DD arising in later stages of 
DD’s morphogenesis when transformations of cAMP and propagation of cAMP waves 
are still in charge [1-3]. 
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Abstract 

Terrorism is considered as the complex non-equilibrium dynamical system 
and described by the simple model. The model is examined by the Stoichiometric 
Network Analysis. Stability-instability conditions were determined. Numerical simula-
tion was used to investigate the behavior of the system in the vicinity of the bifurca-
tion point. 
 
Introduction 
 The terrorism is one of the phenomena that has a specific network processes. 
It exists at all kind and order of the human organizations and between them. 
 The combination of several different approaches is necessary in modeling 
complex phenomena in order to summarize different aspects of the problem. There-
fore, in modeling terrorism, as an extremely important complex dynamical phenome-
non, useful insights could be obtained from sociometric investigation, game-theory 
and multiple agent experiments, but also from the computer simulations based on the 
models inspired by the collected, previous experiences. [1] 
 We join to investigators who social interactions like the chemical reaction ob-
serve. In this aim it is necessary to make a corresponding model. Therefore, the terror-
ism can be studied as the nonlinear dynamic system and the network analysis will be 
used here. 
 
The Model 
 Present model is built from the System Dynamics model of Bruce K. Skarin 
[1]. The original feedbacks are maintained as much as it was possible. The model is 
simplified and redesigned in terms of population dynamics. 
 Our model T(1-7) [2] consists of two main populations P1 and P2, three sub-
populations, A, B and C, all originating from P1, and one subpopulation, D, originat-
ing from the P2. 
 If we accept that army or some special police is antiterrorist group D which 
fights against terrorists B, the average activity of the terrorist group, B, is described 
here by the size of the subpopulation C, of the terrorists presently-engaged in terrorist 
actions. The autocatalytic feedback is involved in recruitment process, because, all of 
the members of the B are (in average level) active in finding and education of the new 
–ones. Their efforts are directed, or maybe, most productive, in some subpopulation A 
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of the population P1. This subpopulation consists of angry, unsatisfied, highly moti-
vated members of P1. The motivation of the members of P1 to fight is influenced by 
the activities of the other population, P2. 
 The population P2 responds on the terrorist acts and measure of its activities is 
size of some subpopulation D, of the members engaged in fight against terror. Their 
activity is directed mainly to decrease the number of the terrorists, but consequently, it 
accelerates the motivation process in population P1. 
 The response of the P2, against the average intensity of terrorist acts can be 
proportional or non-proportional. Such different strategies are modeled here with lin-
ear and simple quadratic rate law. 
 

MODEL T (1-7) 
 P1 → A (T1) 
 A + B → 2B (T2) 
 B ⇔ C (T3),(T-3) 
 B + D  →  D (T4) 
 P2 + cC →  D + cC (c =1 or 2 ) (T5) 
 D→ P2  (T6) 
 P1 + 2D → A + 2D (T7) 

 
 Actual values of the population sizes and rate constants need to be determined 
from the sociometric investigations, or fitted against some monitored time series. Only 
then, the results of the simulation may be compared with some particular situation. 
However, the purpose of presented model is only to illustrate the value of the physico-
chemical approach in modeling the terror, and more precisely in decision making 
when the choice between different strategies is necessary. 
 
Stability Analysis 
 Stoichiometric Network Analysis [3] was used to perform the stability analy-
sis of the model. In the case of the proportional response, the model has only one sta-
ble steady state. If the response is non-proportional (quadratic), then, the steady state 
can be stable or unstable, depending on the values of the rate constants. 
 
Numerical Simulation 
 The computer simulation is performed by the numerical integration of the set 
of corresponding differential equations. The Gear algorithm with backward integra-
tions was used.  
 The results are presented for the proportional response (c=1), and also for the 
quadratic response (c=2). In the case of the quadratic response, the results are pre-
sented for the case of stable steady state and for the unstable steady state. 
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Figure 1. Population dynamics of the subpopulations in the model T(1-7), for propor-
tional response (solid), quadratic response with stable steady state (dash) and quadratic 
response with unstable steady state (dot). Variables are presented in normalized form. 
 

In simulation of the proportional response model, after the initial overshoot, 
behavior is described by the asymptotical approach to the stable steady state. In real 
life, such behavior would correspond to constant average activity of the B, and con-
stant level of terrorism. 
 In the case of the non-proportional response with stable steady state, dumped 
oscillations are obtained in numerical simulation, leading to constant level of terrorism 
at the end. 
 Finally, the simulation of the non-proportional response with unstable steady 
state resulted in monotonous linear increase of the subpopulations A and D with time. 
Subpopulations B and C were maintained at constant level after few initial dumped 
oscillations. This would mean maintaining of the terrorism at some constant level but 
the price was highly increased engagement of the population P2 in fight.  
 Significant attention should be paid also to the fact that the stability depends 
on the sensitivity of the population P1 against the activities of D, through the rate con-
stant of the process (T7). 
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Conclusion 
 We can observe terrorism as any stoichiometric chemical process. But, one 
important question arises: “In the kinetic of the stoichiometric social interactions what 
corresponds to the temperature or the activation energy or the Arrhenius constant?” 
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Abstract  
A two-variable model of reaction-diffusion system based on two coupled catalytic 
(enzymatic) reactions is presented. The model consists of elementary reactions only. 
Numerical solutions to corresponding reaction-diffusion equations for two-
dimensional system (2D continuously feed unstirred reactor) generate stationary pat-
terns which mimicked all Old Hebrew letters (the Siloam inscription).  
All letters are obtained for the same values of the parameters determining the model. 
Different sizes of rectangular polygons and various positions of initial excitations are 
necessary the desired pattern. 

 
Introduction 
One of the most fascinating problems is the generation of shapes (patterns) in biologi-
cal systems. Alan Turing was the pioneer in explanation of this problem on the most 
fundamental level. In the paper [1] entitled “The chemical basis of morphogenesis” he 
has shown that a model of one-dimensional (1D) system, in which appropriate chemi-
cal reactions and diffusion occur only, had the asymptotic solutions, which were sta-
tionary but periodical in space. Now reaction-diffusion systems can be treated as the 
minimal models of various patterns observed in biology as well as in nature. Real 
nonlinear reaction-diffusion systems become useful caricatures of many biological 
systems. For example, running impulses can be easy observed experimentally in a thin 
layer of the reaction mixture in which the Belousov-Zhabotinsky (B-Z) reaction oc-
curs. Qualitative properties of such waves are similar to the spreading of electrical 
excitations along axons in neurons as well as to waves in the Purkinje fibers in heart. It 
is much easier to investigate qualitative properties of such waves in chemical systems 
than in biological ones.  

Asymptotic solutions to excitable reaction-diffusion equations in two dimen-
sional (2D) systems with appropriate initial and boundary conditions can also have the 
form of stationary but periodical in space distributions of reagents concentrations. 
Such distributions have been observed in experiments performed in 2D continuously 
feed unstirred reactors (2D CFUR). Experiments and models of reaction-diffusion 
systems enrich our knowledge about possibilities of generation of various patterns on 
the physicochemical level. There arise the quite natural questions. How rich is the 
variety of patterns generated by reaction-diffusion systems?  Shall we construct mod-
els, which solutions have desired distributions? The answers to these questions are 
partially positive.  
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Results and Discussion 
In order to show the examples illustrating the richness of possible patterns a 

model of excitable reaction-diffusion system has been elaborated, which asymptotic 
solutions have the form mimicking all capital letters of the Latin alphabet [2] as well 
as the Old-Hebrew alphabet [3]. The model consists of two coupled catalytic (enzy-
matic) reactions. One of them is allosterically inhibited by an excess of its reactant and 
product. The other one is usual catalytic (enzymatic) reaction, which proceeds in its 
saturation regime. It is assumed that these reactions occur in an open system, which is 
2D CFUR with boundaries impermeable to the reagents. All parameters in the reac-
tion-diffusion equations are the same for the generation of the both alphabets.  Only 
sizes of the reactor and places of initial excitations have to be changed to generate the 
wanted patterns. All capital Latin letters can be obtained in the reactors with convex 
areas, whereas some Old-Hebrew letters can be generated in the reactors with convey 
shapes (rectangular polygons with 6, 8 or 10 apexes). For simplicity all numerical 
calculations have been performed for 2D CFURs in the form of rectangular polygons.  
The results of calculations are presented in Fig. 1. The contours of all letters visible on 
this Fig. have been obtained by separation of the asymptotic solutions into two re-
gions. The regions in which the concentration of the reactant is higher than some se-
lected value are marked in black.   

Not all letters have elegant forms. Some of them are similar to scribble, but 
they are readable, especially when used in sets meaning words. More elegant form of 
the letters can be obtained, if instead of the rectangular polygons one uses the reactors 
with smooth boundaries.  

It is noteworthy that the reaction-diffusion model is structurally stable, which 
means that small changes in its parameters do not change the shapes of the asymptotic 
solutions. Also small changes in sizes of the reactors and positions of initial excita-
tions do not change the qualitative properties of the asymptotic solutions.  

All letters have been obtained as the asymptotic solutions of the deterministic 
problem with well defined inhomogeneities as the initial distributions of reagents. In 
real systems inhomogeneities can appear due to internal, local fluctuations. Therefore, 
there is probability greater than zero that the patterns can appear spontaneously in real 
systems.  

 It is noteworthy that the model is not exceptional one. The identical patterns 
can be generated in many reaction-diffusion systems, provided they have the similar 
qualitative properties to the presented model. Moreover, it is worth to stress that the 
model contains two variables only, and therefore, it is simple one. One can expect 
more rich patterns in systems with three, four and more variables.  
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Alef       Bet     Gimel     Dalet       He       Vav     Zayin     Chet        Yod           Khaf  
  

                                                        
   
  Lamed   Mem     Nun      Ayin      Peh     Tsadeh    Qof      Resh    Shin        Tav 
 

  
Figure 1. The set of asymptotic patterns generated in twenty 2D systems. The patterns 
have been obtained in convex or concave systems with different sizes and initial con-
ditions. The patterns are little deformed to give the letters with close height and width.  
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Abstract  
We study spatiotemporal solutions of reaction-diffusion-convection systems. As an 
example, we take a catalytic cross-flow tubular reactor with an exothermic chemical 
reaction of the first order. In this paper, parameter domains are analysed, leading to 
chaotic or other complex behaviour. The results obtained by continuation for the reac-
tion-diffusion system are related to spatiotemporal patterns obtained directly by nu-
merically solving partial differential equations that describe a bounded system. Waves 
and complex patterns are investigated in dependence on convection velocity v and heat 
transport coefficient αy. 
 
Introduction 
Reaction-diffusion and reaction-diffusion-convection systems are able to support 
waves and complex structures [1]. Origin of nonhomogeneous steady state structures 
in two-variable reaction-diffusion systems, where the inhibitor diffuses sufficiently 
faster than the activator, was studied by Turing [2]. More recent work shows that pat-
terns may be induced not only by the interaction of reaction and diffusion, but also by 
the interaction of reaction and convection. Convective flow is in practice realized, for 
example, by using a cross-flow reactor. Main advantage of such construction of the 
reactor is to help maintain reactant concentrations at optimal values that lead to maxi-
mal reaction rates.  
 
Model 
The model is the simplest description of a catalytic bed tubular reactor with exother-
mic reaction of the first order [3, 4]. Concentration and temperature gradients between 
the fluid and solid phases are assumed absent. The following two equations are dimen-
sionless mass and enthalpy balances in the bed, with conversion x and dimensionless 
temperature y as variables: 
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where v is the flow velocity, d is the heat diffusion/dispersion coefficient (mass dis-
persion is neglected), αx, αy are mass and heat transfer coefficients, resp. Le is Lewis 
number, Da is Damkohler number and B is reaction enthalpy. 
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Danckwerts boundary conditions are used for the system with convective flow, :0=ξ  
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Neumann boundary conditions are used for nonflow system, 
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Bifurcations in the Homogeneous System 
For determination of parameter domains for particular types of wave solutions it is 
necessary to construct a bifurcation diagram, for example in the parameter plane Da - 
αy (Fig. 1). This diagram was constructed for d=0 and v=0 and serves as a guideline to 
the spatially nonhomogeneous system. All solutions were obtained by software tool 
CONT [5]. 
 

 
Figure 1. Bifurcation diagram Da - αy; B = 10, αx = 0.5, Le = 1, γ = 1000 

 
Nonflow System 
Spatiotemporal chaos: The region of occurrence of chaos is located in the bifurcation 
diagram (Fig. 1) just above the of Hopf bifurcation line, in the excitable and oscilla-
tory regions [6]. Two types of chaotic behaviour occur in the system (see Fig. 2.). In 
the first case, there are triangle instabilities, which occur first in the chaotic region 
when Da is increased. The other case involves undulating instabilities that replace the 
triangular chaos as Da is further increased. The degree of chaos was determined by 
evaluation of Lyapunov exponents and dimension of the system. For example, for αy = 
1.0 and Da = 0.039558 we found 23 positive Lyapunov exponents for chaotic triangu-
lar patterns and for αy = 1.15 and Da = 0.064 14 positive Lyapunov exponents for 
undulating chaos. Lyapunov fractal dimension of such a system is: 
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Thus we found for triangular chaos 
DL = 42.12 and for undulating chaos 
DL = 29.16. 

 
Effects of Flow 
There are two different effects of convective flow, depending on the stability in the 
kinetics. 
 

Stable kinetics: When the kinetics are stable (pulse and front waves), flow only in-
creases the speed of propagation of the wave through the reactor. This is expected 
since Le = 1 and there is no differential flow. 
 

  
       x        x 

Figure 2. Triangular chaos; 
Da = 0.039558, αy = 1.0, d = 1.0 

Figure 3. Undulating chaos; 
Da = 0.064, αy = 1.15, d = 1.0 

 
Unstable kinetics: When kinetics are unstable, the results show interesting behaviour 
for increasing flow rate. There are two marginal values of convection velocity. The 
first one corresponds to a Hopf bifurcation and its crossing causes appearance of stable 
interface, between stable steady state with a high conversion and oscillatory regime. 
The second bifurcation is a Hopf bifurcation again and occurs for high values of con-
vection flow. This bifurcation causes destabilisation of the high conversion steady 
state. Both bifurcation points are depicted in Fig. 5. (See and compare Figures 4 and 5)  
 

   
      x      x       x 

a) v = 0.5 b) v = 1.5 c) v = 5.5 
 
Figure 4. Effects of flow on chaotic pattern Da = 0.039558, αy = 1.0, d = 1.0 
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Zig-zag pattern: We studied effects of convection also in the region, where front 
waves occur. Perturbation of the system was due to Danckwerts boundary condition at 
the beginning of the reactor, which maintains conversion of the reactant equal to zero. 
In small range of αy this perturbation caused that zig-zag pattern arises. From the en-
trance point to the reactor the front spreads in the direction of flow, but after a short 
time it loses its stability and is converted into other front which continues in opposite 
direction. This effect appears, because the first front spreading from the origin is a 
transient, which is close to but still out of the region of existence of stably propagating 
front, see Fig. 6. Accordingly, this transient front is after a short time replaced by 
counter-propagating stable extinction front. 

 
Figure 5. Effects of convection on stabil-
ity of high conversion steady state. 

Figure 6. Continuation of front waves, 
transient front appears to the left of the 
turning point at αy = 0.9825625. 

 
Zig-zag pattern and effects of convection on this pattern are shown in Figure 7 (Da = 
0.04, αy = 0.9825625, d = 1.0). 
 

   
      x       x       x 

 

Figure 7.     v=2.5      v=5.0      v=6.5 
 
Continuation of front waves: Line of front waves plotted in Figure 6 is divided into 
stable and unstable parts. This solution was obtained by continuation of fronts [7] 
by using the wave transformation τξζ u−= , where u is the wave velocity. 
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Abstract 
Up to now, there are three possible mathematical formalisms discussed related to the 
theory of electroviscoelasticity. The first is tension tensor model where the normal and 
tangential forces are considered regardless of their origin (mechanical and/or electrical). 
The second is Van der Pol derivative model. Finally the third, here presented, model 
comprise an effort to generalize the previous Van der Pol equation; i.e. the ordinary 
time derivatives and integrals are now replaced with corresponding fractional-order 
time derivatives.  
 
Introduction 
A new idea, using deterministic approach, has been applied for the elucidation of the 
electron and momentum transfer phenomena at, both, rigid and deformable interfaces 
in finely (micro, nano, atto) dispersed systems.  Since the events at the interfaces of 
finely dispersed systems have to be considered at the molecular, atomic, and/or enti-
ties level it is inevitable to introduce the electron transfer beside the classical heat, 
mass, and momentum transfer commonly used in chemical engineering. Therefore, an 
entity can be defined as the smallest indivisible element of matter that is related to the 
particular transfer phenomena. Hence, the entity can be either differential element of 
mass/demon, ion, phonon as quanta of acoustic energy, infon as quanta of information, 
photon, and electron [1-5]. 
 
Structure and Dynamics 
A number of theories that describe the behavior of liquid-liquid interfaces have been 
developed and applied to various dispersed systems e.g., Stokes, Reiner-Rivelin, 
Ericksen, Einstein, Smoluchowski, Kinch, etc. According to the developed model 
liquid-liquid droplet or droplet-film structure (collective of particles)  is considered as 
a macroscopic system with internal structure determined by the way the molecules 
(ions) are tuned (structured) into the primary componentns of a cluster configuration 
[1]. How the tuning/structuring occurs depends on the physical fields involved, both 
potential (elastic forces) and nonpotential (resistance forces). All these microelements 
of the primary structure can be considered as electromechanical oscillators assembled 
into groups, so that excitation by an external physical field may cause oscillations at 
the resonant/characteristic frequency of the system itself (coupling at the characteristic 
frequency). If  an incident periodic physical field (Fig. 1b), e.g., electromagnetic, is 
applied to the rigid droplet of Fig. 1a, then the resulting, equivalent electrical circuit 
can be presented as shown in Fig. 1c.  
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Figure 1. a) droplet/double emulsion, b) incident electromagnetic field,  
c) equivalent antena output circuit; Courtesy of Marcel Dekker, Inc. New York , 

New York (2002), [1] Page 854. 
 

The equivalent electrical circuit, rearranged  under the influence of an applied 
physical field, is considered as a parallel resonant circuit coupled with another circuit, 
such as an antenna output circuit. Electrical analog consists of the passive elements 

and , resistive, capacitive and inductive, respectively, and an active 
element, emitter coupled oscillator . Now, the electromagnetic oscillation, for all 

,C,R dd dL

dW
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the noise frequency components, may be presented by  the following linear differential 
equation: 
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where  is the noise current and )t(i )(An ω  is the spectral distribution of the noise cur-
rent as a function of frequency. Particular solution of (1) may be expressed by: 
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Fractional derivatives provide an excellent instrument for the description of 
memory and hereditary properties of various materials and processes. This is the main 
advantage of fractional derivatives compared to the classical integer-order models, in 
which such effects are in fact neglected. The mathematical modeling and simulation of 
systems and processes, based on the description of their properties in terms of frac-
tional derivatives, naturally leads to differential equations of fractional order and to 
necessity to solve such equations. Here, the capacitive and inductive elements, using 
fractional order , enable formation of the fractional differential equation, i.e. 
more flexible or general model of liquid-liquid interfaces behaviour. Now, an integral 
form using Riemann-Liouville definition is given by: 
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So, in that way one can obtain linear fractional differential equation with zeros initial 
conditions as follows: 
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Using Laplace transform of  (5) leads to  
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The term-by-term inversion, based on the general expansion theorem for the Laplace 
transform [4] produces 
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Inverse Laplace transform of   is  fractional Greens function: )s(G
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where  the fractional derivatives of , (10) are evaluated with the help of  (3). At 
last, an explicit representation of the solution  is: 
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Conclusion 
The theory of electroviscoelasticity using fractional approach consitutes a new 
interdisciplinary approach to colloid and interface science. Hence, 1-more degrees of 
freedom are in the model, 2-memory storage considerations and hereditary properties 
are included in the model, and 3-history impact to the present and future is in the 
game!  
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Introduction 

Oscillatory behaviour is frequently observed in heterogeneous catalytic systems 
[1]. The first oscillatory systems were CO and H2 oxidation reactions, where self sus-
tained oscillations of the only reaction product CO2 or H2O has been detected [2,3]. 
Later oscillations were observed during the NO+H2 reaction over Pt, Rh and Ir single 
crystal surfaces, where the concentrations of the 3 N-containing products namely N2, 
N2O and NH3 exhibited oscillatory behaviour [4,5]. It was demonstrated that the activ-
ity and the selectivity are strongly dependent on the nature and the structure of the 
chosen single crystal surface. Moreover, the character of reaction rate oscillations was 
found to depend strongly on the surface structure. On Pt(100) the rates of N2, NH3 and 
H2O formation oscillate in phase. On Rh(111) and Rh(533) the rate of N2 formation 
oscillates roughly in antiphase with the rates of NH3 and H2O formation and, finally, 
on Ir(110) the rates of NH3 and H2O produced oscillations exactly in counter phase. 
The analysis of the phase shifts between the products allowed to obtain additional in-
formation about the reaction mechanism and helps in the discrimination of the possi-
ble mathematical models [6].  
 Recently, a phase shift between oscillations of N2 and H2O production rates 
has been detected during N2O+H2 reaction over Ir(110) [7]. It was demonstrated that 
this phase shift could be simulated if lateral interactions in the adsorbed layer are con-
sidered [8]. The change of the reducing component hydrogen to CO in this oscillating 
system revealed even more interesting and puzzling properties of oscillations. It was 
discovered that not only the products N2 and CO2 oscillate nearly in counter phase, but 
also the reactants N2O and CO produce the counter phase oscillations [9]. To our 
knowledge this is the first observation of a phase shift between the 2 reactants partici-
pating in one reaction. Earlier, antiphase oscillations between reactants have been de-
tected during the oxidation of a CH4+NO mixture over Titania-Supported Pd catalysts 
[10]. However, in this case 2 reactions of methane oxidation CH4+O2 and CH4+NO 
proceed together with the NO decomposition reaction. 
 The goal of the present study is to develop a mathematical model, which can 
describe the experimentally observed oscillatory behaviour in the N2O+CO reaction 
and to explain the origin of the phase shift between oscillations in reactant concentra-
tions N2O, CO as well as oscillations in the N2 and CO2 production rates.  
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Results and Discussion 
 Experiments were performed in a UHV system equipped with facilities for 
LEED, AES and a differentially pumped quadrupole mass spectrometer. The base 
pressure was always better than 2×10−10 mbar.  

The Ir sample was cut from an Ir single crystal by spark erosion to within 0.5º of 
the desired direction and polished down to a grain size of 1 µm. The crystal was spot-
welded to a Ta support and could be heated resistively up to 1400 K. The temperature was 
measured using a Pt-Pt/Rh thermocouple, which was spotwelded to the back of the crystal. 
The crystal was cleaned by multiple heating cycles in an oxygen or hydrogen atmosphere, 
Ar+ ion bombardment and flashing in UHV to 1400 K. The Ar+ ion sputtering and flashing 
treatments were repeated at the beginning of each series of experiments and the surface 
cleanliness and structure were checked by AES and LEED. 

During the reaction, the crystal was turned in front of a small opening, which 
gave access to the quadrupole mass spectrometer (QMS) chamber. Reaction was per-
formed in the flow mode using a turbomolecular pump. 

High purity gases (Messer Griesheim, purity: 99.5-99.999%) were used with-
out further purification. The pressure readings of the ion gauge were corrected using 
relative sensitivities for N2O and CO to N2 of 1.0 and 1.05, respectively. Since some 
species have the same mass (CO and N2 – mass 28, N2O and CO2 – mass 44), the use 
of labelled CO (13CO from Sigma Aldrich) was required to distinguish them. To make 
reading easier it will be further referred in the text simply as CO. The details of ex-
perimental procedures are described elsewhere [7, 9]. 

Oscillatory behaviour has been detected in the temperature range between 373 
K to 377 K at a N2O pressure in the order of 1×10−6 mbar and very low CO/N2O ratios 
(close to 0.1). The oscillations were triggered by slowly heating the crystal in the pres-
ence of N2O (1×10−6 mbar) with a very low amount of CO added (CO/N2O ratio of 
approximately 0.05), from room temperature to 800 K and then subsequent cooling 
down to a temperature between 370 K and 390 K. Then the pressure of CO was in-
creased stepwise until sustained oscillations in rate started. 

Fig. 1 shows the oscillatory behaviour at 375 K for a CO/N2O ratio equal to 
0.1. The period of oscillations is approximately 60 s. As expected, the rate of N2 for-
mation oscillates in counter-phase with that of the reactant N2O and the CO2 pressure 
oscillates in counter-phase with the pressure of the other reactant CO. The most strik-
ing result is that the pressure of the reactant N2O oscillates in an almost counter-phase 
relationship with the oscillations of the other reactant CO. This results in nearly anti-
phase oscillations of the N2 and CO2 production rates.  
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Figure 1. Oscillations in the partial pressures of N2O, N2, CO and CO2, on the 
Ir(110) surface, at a N2O pressure of 1×10−6 mbar and 375 K. CO/N2O ratio was 0.1. 
 
 
Mathematical Modeling 

 
Temperature programmed reaction studies revealed that on Ir(110) only N2 

and N2O were released from the surface in the temperature range from 350 K to 500 K 
and no NO desorption was detected [7,9]. Taking these data as a basis the following 
set of elementary steps was formulated: 

],ONM[]M[ON 2(g)2
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−⇔+
−
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CO],[M[M]CO
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(g) −⇔+
−

k
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O],[MNO]N[M 2(g)2
3

−+⇒−
k

  

.2[M]COCO][MO][M 2(g)
4

+⇒−+−
k

 
N2O + CO ⇒ N2 + CO2

The reaction mechanism includes the adsorption/desorption of N2O, CO and 
N2O dissociation. According to the data of TPD studies [7] the reaction products N2 
and CO2, produced at T>400 K, desorb immediately after their formation on the cata-
lyst surface. 
 The dynamic behavior of the system can be described by the following system 
of differential equations, corresponding to mechanism (1):  
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where denotes Nx 2O coverage, y  – CO coverage,  – O coverage, pz N2O (PN2O), pCO 
(PCO) – N2O and CO pressures in the reactor (inlet), V – the reactor volume, F – the 
pumping rate. σ  = (SNRT)/V, where Ns and S stand for the adsorption capacity and the 
surface area of the Ir(110) single crystal surface, respectively. 
 The system (2) describes the variation of reagents coverages on the catalyst 
surface. The variations of the N2O and CO partial pressures in the chamber are de-
scribed by system (3). To simulate the variation of the N2 and CO2 partial pressures 
the following differential equations must be added: 
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Table 1 shows the values of parameters, which are known from the experi-
mental data and were used in the simulations. 

 
Table 1 
F, pumping rate cm3/s 42500 
Vk, volume of the reactor cm3 40000 
S, Ir(110) surface area cm2 0.56 
N, the adsorption capacity mol/cm2 1.67×10-9

 
Mathematical analysis demonstrates, that there is no any limit cycle solutions in the 
system (2), (3) at any values of the constants ki, where i= ±1, ±2, 3, 4. Earlier it was 
demonstrated that oscillatory behaviour during N2O+H2 reaction could arise due to the 
lateral interactions [8]. An analysis of the temperature programmed reaction studies 
presented in ref. 7 demonstrates that oxygen greatly modifies the rates of N2O desorp-
tion and dissociation. At some range of oxygen coverages due to lateral interactions 
adsorbed oxygen accelerates the rate of N2O dissociation. This kind of lateral interac-
tions was demonstrated to be crucial for the appearance of oscillatory behaviour dur-
ing the N2O+H2 reaction. Therefore, this kind of lateral interactions was also intro-
duced in the present model. The difference between both systems is determined by the 
fact, that CO could inhibit the CO2 production rate over Ir(110) [11]. Therefore, this 
type of lateral interactions was also included in the model. However, this effect was 
not enough to simulate a very large phase shift between the reactants N2O and CO. A 
special study has been done to reveal the type of lateral interactions that can simulate 
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the experimental data presented in Fig.1.The rate constants ki are supposed to be ex-
pressed in the following form: 

),/)exp(()/exp(0 RTzeyexeRTEkk iziyixiii ++×−=  
where eix, eiy, eiz are parameters of the lateral interactions. The values of reaction stages 
constants were chosen in such a way that they are in agreement with the known litera-
ture data and produce the best qualitative similarity of model solutions and experimen-
tal data. The obtained values of parameters at P  = 10  mbar, P  = 1.3×10  mbarN2O

−6
CO

−7  
are shown in the Table 2. 

Table 2. 
 k0 E [cal/mol] Value of k at T = 375 K 

1 7.638358×104 (s×mbar)−1 0 7.638×104 (s×mbar) −1

−1 1.415794×1011 s−1 25000 3.729×10−4 s−1

2 2.20×106 (s×mbar) −1 0 2.200×106 (s×mbar) −1

−2 2.58×109 s−1 28000 1.210×10−7 s−1

3 1.00×1018 s−1 36000 1.013×10−3 s−1

4 3.00×106 s−1 12000 3.013×10−1 s−1

 
In order to describe the rate oscillations with the observed phase shift between CO and 
N2O oscillations the following lateral interactions in the adsorbed layer were introduced: 
 

Table 3. 
Stage 1 e1,x = 6 N2O activates N2O adsorption 
Stage 2 e2,x = –7 N2O inhibits the adsorption of CO 
Stage 3 e3,x = 1.5 N2O activates N2O decomposition 
Stage 3 e3,z = 10 O activates N2O decomposition 
Stage 4 e4,y = –3 CO inhibits the CO+O reaction. 
Stage 4 e4,z = 1 O activates the CO+O reaction. 

 

Fig.2 shows the stationary solutions of system (2), (3) in dependence on T with the 
parameters from tables 1-3. 

 
 
 
 
Figure 2. The stationary 
solutions of (2), (3) ver-
sus T. Solid line denotes 
the stable solution, 
dashed line – the unstable 
solution. The black 
squares at Th = 384 K 
mark the Andronov-Hopf 
bifurcation point.  
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The stable limit cycle solution arises at Th and exists at T < Th until colliding with un-
stable solution X0 (not shown) and disappearing at T ≈ 300 K. The rate of CO2 produc-
tion in the unsteady state together with the amplitude of the rate oscillations is shown 
in the next Figure. 
 

 
 
 
 
 
 
 
 
Figure 3. The rate of 
CO2 production versus 
the temperature. Dotted 
line indicates the ampli-
tude of rate oscillations. 
 
 

The period of oscillations depends greatly upon the temperature. At low temperatures 
the amplitude of oscillations diminishes, the period increases and oscillatory behaviour 
can be hardly detected. 

 
 
 
 
 
 
 
 
 
Figure 4. The depend-
ence of the period of 
limit cycle oscillations 
upon the temperature 
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The variation of N2 and CO2 partial pressures were simulated with model (2) and 
equations (3). The results of simulations are demonstrated in Fig.5. 

 
 
 
 
 
 
 
 
Fig. 5. Steady oscilla-
tions of N2O, N2, CO, 
and CO2 partial pres-
sures at T = 375 K. 
 
 
 

Similar to the experimental data the N2O partial pressure oscillates in antiphase with  
the N2 partial pressure and the CO partial pressure oscillates in antiphase with the CO2 
partial pressure. Moreover, the results of the simulation demonstrate that as in the ex-
periments the reactants N2O and CO produce nearly antiphase oscillations. To under-
stand the origin of the phase shift, let us consider the oscillatory behavior of surface 
coverages shown in Figure 6. 
 

 
 
 
 
 
 
 
 
Fig. 6. Development of 
the oscillations of N2O, 
CO, and O surface 
coverages at 375 K. 
 
 

The coverage oscillations in the model are caused by the competition between N2O 
and CO adsorption. After the introduction of the reactant mixture in the reactor ad-
sorption of CO and N2O proceeds. The surface is covered mainly by N2O, because its 
partial pressure is higher and N2O inhibits CO adsorption. The rate of N2O decomposi-
tion is slow due to a low oxygen coverage. As the O concentration increases, it accel-
erates N2O decomposition rate until it is completely decomposed and the N2O concen-
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tration will fall nearly to zero. At this point the concentration of free sites is low, the 
rate of N2O decomposition decreases and the N2O concentration starts to increase. At a 
low N2O concentration the CO adsorption is large and the CO coverage also begins to 
increase leading to a decrease of the O coverage. The CO coverage will continue to 
increase until the N2O will reach such a critical value, that it will inhibit CO adsorp-
tion. The phase shift between the N2O and O coverages results from the influence of 
the O coverage on the rate of N2O decomposition. The second reason is the inhibition 
of CO adsorption by N2O. 
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SPATIOTEMPORAL PHENOMENA  
IN THE NO+CO REACTION OVER Pt(100):  

SIMULATION RESULTS 

E.S. Kurkina, N.L. Semendyaeva 
Moscow State University 

Department of Computational Mathematics & Cybernetics 
Leninskie Gory, Moscow, 119992, GSP-2, Russia 

 
Heterogeneous catalytic reactions exhibit a rich variety of interesting non-

linear phenomena, including homogeneous self-sustained oscillations and bistability, 
propagating waves, pulses and fronts, spiral waves and stationary patterns. Spatiotem-
poral patterns with typical length scales in the µm range have been observed under 
ultra-high vacuum (UHV) isothermal conditions in investigations with the photoemis-
sion electron microscope (PEEM).  

One of the most studied reactions is the catalytic NO reduction on the Pt(100) 
single crystal surface. Real time observations of the Pt(100) surface by means of 
PEEM detected propagating fronts, target patterns, rotating spirals, standing waves, 
solitary pulses, and chemical turbulence. 

 

 
Figure 1. Bifurcation diagram for ODE system. ΘCO – concentration of COads. 

Solid (dashed) lines represent the stable (unstable) steady states. h - supercritical Hopf 
bifurcation; sn1, sn2 -  saddle-node bifurcations; sl – saddle-loop bifurcation.  

 
In this paper the system of consistent mathematical models of 

NO+CO/Pt(100) is constructed to describe spatiotemporal patterns observed in ex-
periments. The system includes the kinetic Monte Carlo lattice-gas model (kMC), the 
mean-field differential equation model (ODE) and the reaction-diffusion model 
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(PDE). The characteristic feature of the models is that they take into account non-
ideality of the adsorbed layer, namely lateral interactions play a crucial role in the 
adequate description of experimental data. 

 
Figure 2. Traveling pulse in PDE model. 

 

 
 

Figure 3. Spiral waves in PDE model. 
 
The influence of internal fluctuations on the spatiotemporal formation was 

studied by means of kMC model. Different types of oscillatory-like behavior of lattice 
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gas model were revealed: kinetic oscillations, noise-induced oscillations and transi-
tions. Pulses in the excitable medium and fronts in the bistable region were simulated.  

The detailed one parameter and two parameters bifurcation analysis of ODE 
system has been performed (fig.1). The space of external parameters (the temperature 
T, the NO and CO partial pressures) was divided on the regions with different dy-
namic behavior. The boundaries of these regions were constructed with the help of 
path-following algorithms. The bifurcation analysis revealed the oscillatory domains 
and the regions of multiple steady states. The regions of excitable dynamics were also 
determined.  

The spatiotemporal phenomena were investigated in the frame of the PDE 
models. Solitary pulses (fig.2) and spatiotemporal chaos were found in the excitable 
medium. Fronts were simulated in the region of bistability. Self-sustained oscillations 
and spiral waves (fig.3) exist in oscillatory region of ODE.   
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SISTEMATIZATION OF REACTION MECHANISMS  
WITH MULTIPLICITY STATIONARY STATES  

ON THE CHANGING ACTIVITY OF THE CATALYST 

N.I. Koltsov, E.S. Patmar 
Department of Physical Chemistry, Chuvash State University, 

Moskovskii prospect 15, 428015 Cheboksary, Russia 

Abstract 
In this communication we lead sistematization of two–three-and four-stages 

mechanisms of reactions for which deactivation of the catalyst results in multiplic-
ity of stationary states and increase of number internal stationary states. 

Introduction 
In works [1-3] it is shown that change of activity of the catalyst results in oc-

currence of multiplicity of internal stationary states (ISS) (the stationary states de-
scribed by absence of zero concentration of intermediate substances) in two-stage 
reactions. In the present message sistematization of mechanisms of two-three-and 
four-stages reactions for which deactivation of the catalyst results in multiplicity of 
ISS. 

Results and Discussion 
 Researches were carried out in isothermal conditions non-gradient a 

differential reactor in the assumption quasi-stationarity of reactions on the 
basic substances. The changes in catalyst activity are determined by the 
presence of the following stages in the reaction mechanism [4] 

iii
i

ii
i

i ZbXaXa ∑∑∑ += − ,   (1) 

where Xi and Zi are intermediate and buffer  substances, Zj  occurring only in the 
right part of the stages, , and  are  stoichiometric numbers ( = + ). 
To automatize the research of MSS existence under the condition of MSS existence 
under the condition of catalyst decontamination the process of the analysis of reac-
tion stages schemes is developed by us in general outline. In the first stages of this 
process the stages  with buffer substances are described as linear literal equations 
with  constant coefficients. In these equations the intermediate X

ia ia− ib ia ia− ib

i  substances  
stances stand for buffer Zj  ones in the following form  

Z di i j
j

= X j∑ , ,      (2) 

where  are some rational numbers. The analysis shows that if all the coeffi-

cients are not negative ( ) then catalyst decontamination does not lead 

to MSS. But if there is only one negative coefficient (

di j,

di j, 0, ≥jid

jid , 0, <jid ), then catalyst 
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contamination leads to MSS at the definite mechanism structure. 
Let us take two models to illustrate the process of the MSS analysis. For buffer  
stages 

X Z X X Z Z1 1 1 2 1= 2+ = +, .    (3) 
equations (2) are written 

Z X Z X1 1 2= 2=, .      (4) 
As these equations do not contain negative coefficients , catalyst decontamina-
tion does not lead to MSS owing to the introduction  of stages (3) into the reaction 
mechanism. 

di j,

For buffer stages 
3 31 1X Z= ,  2 2 1X Z Z2= +     (5) 

equations (2) have the following form 
Z X Z X X1 1 2 22= 1= −, .

i i= + Z

     (6) 
As there are negative d , in these equations, catalyst decontamination in the form 
of stages (5) can lead to MSS. Making use of this method we conclude that the 
presence of one bimolecular buffer stage of form  

i j,

2
1 2

X X Z , X X Xi i i1 2 3
+ = +     (7) 

leads to MSS for the reaction mechanisms having one SS under the conditions of  
lack of catalysts decontamination. In total it has been found accordingly 1, 5 and 21 
two-three-and four-stages mechanisms which addition of one of buffer stages of a 
kind (7) results in occurrence of two ISS. For an establishment of structure of these 
mechanisms the criterion of multiplicity [5] which is taking into account stages of 
deactivation of the catalyst was used. We also investigated mechanisms of reac-
tions for which deactivation of the catalyst results in increase of number ISS twice. 
For the decision of this task in a general view the simplified method [6] is devel-
oped. This method to find number of decisions of systems of the nonlinear alge-
braic equations describing stationary behaviour of reactions. The analysis has 
shown that two and more ISS arise in the reactions containing one buffer stages of 
a kind (1). Introduction of one of buffer stages of a kind (1) can result in growth 
ISS only at corresponding structure of the basic mechanism. 11 four-stages 
schemes for which the increase twice numbers ISS is observed at loss of a con-
stancy of activity of the catalyst are established. On fig. 1 kinetic gives dependence 
with four ISS for reaction of carbon monooxide oxidation proceeding on the 
mechanism is submitted  

1. O2 + K = KO2,   2. K + KO2 = 2KO, 
3. K + KO + CO = 2K + CO2,   4. K + 2KO + 2O2 = 3KO2, (8) 

5. 2KO + 2CO = K + KCO2 +CO2
(KCO2 - buffer substance). Scheme (8) correspond to one of the established 
schemes. 
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Figure 1. Dependence of concentration of substance KO2 on concentration of oxy-
gen for reaction of carbon monooxide oxidation proceeding under the scheme (8) 

at:  k1 = 0,001;  k2 = 1;  k-2 = 0,001; k3 = 2; k4 = 30; k5 = 0,01; k-5 = 1 (s-1) 
 
The received results open new peculiarities of reactions proceed on catalysts of 
variable activity. 
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Abstract 
A model mechanism of the Bray-Liebhafsky oscillatory reaction without direct auto-
catalytic and/or autoinhibition steps is utilized to simulate numerically complex oscil-
lations when the reaction is conducted in a well-stirred open reactor.  
 
Introduction 
A model mechanism for the Bray-Liebhafsky reaction consisting of the following re-
actions: 
 

3IO I 2H− −+ + +   2HIO HIO+  (R1),(R-1) 

2HIO I H− ++ +  →  2 2I O H O+  (R2) 

2 2I O H O+   2HIO  (R3),(R-3) 

HIO I H− ++ +   2 2I H O+  (R4),(R-4) 

2 2HIO H O+  →  
2 2I H O H O− ++ + +  (R5) 

2 2 2I O H O+ →  2HIO HIO+  (R6) 

2 2HIO H O+ 2

IO H H O− ++ + →
 →  

3 2IO H H O− ++ +  (R7) 

3 2 2   
2 2 2HIO O H O+ +  (R8) 

 
which is one variant of a model proposed by Schmitz [2], has been found to simulate 
well a number of experimentally observed phenomena in closed and open reactors 
[1,3-6]. Our intention here is to see whether complex oscillations, found experimen-
tally in the Continuously-fed well Stirred Thank Reactor (CSTR), can be simulated by 
the same model and with exactly the same set of rate constants that was optimized for 
batch conditions. 
 The analyzed model is based on the liquid phase reactions; the rates of escape 
of volatile species and gaseous O2 and I2 from the system are not considered. There is 
no direct autocatalitic or autoinhibition step in the form of A xB (x 1)B+ → ± , that 
would obviously induce non-linearity in the model.  
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Results 
To simulate numerically the dynamics of the BL reaction in the CSTR, the re-

actions due to the flow of the reactants through the reactor were added. Specific flow 
rate, as the control parameter, was varied from kf = 1.0×10-6 to kf = 1.0×10-1 min-1. 
Simulated time series in an interval from 1000 to 1200 min, which are presented in 
Fig.1, show change in dynamic pattern from simple periodic oscillations (a) and (d), to 
complex periodic oscillations ((b) and (c)). In the last two cases different number of 
small-amplitude oscillations between the large-amplitude excursions can be noted. The 
observed dynamics emerges apparently through a stable steady state, characterized by 
a point attractor in the phase space, which loses stability at kf = 2.99×10-4 min-1 (Fig.2) 
and, through a supercritical Hopf birfurcation, makes a transition to a periodic limit 
cycle. By increasing the flow rate the complex oscillations with different numbers of 
small amplitudes emerge and attracting periodic orbit becomes of saddle type but only 
with respect to large-amplitude oscillations. In subsequent transitions, the number of 
small-amplitude oscillations arises and, finally, at kf = 5.1400×10-3 min-1, a new limit 
cycle due to small regular oscillations appears. This limit cycle loses stability and re-
verts to a stationary point attractor at kf = 5.1446×10-3 min-1 through the subcritical 
Hopf bifurcation. The stationary point attractor once more loses stability, but in a very 
narrow region between 5.1500×10-3 and 5.1501×10-3 min-1, after which it appears to be 
generally stable.  
 
Discussion 

The complex oscillations are found in transient, but also in permanent regime 
(until 10000 min), as in real experiments. The corresponding phase space diagram, but 
only for the case given in Fig. 1(c), is presented in Fig. 3. The simulations are very 
sensitive on the periods between two successive steps and numerical parameters. 

In numerical simulations small-amplitude oscillations emerge at the end of the 
reduction pathway. This is opposite to the experimentally obtained results, where such 
dynamic behavior is observed at the end of the oxidation pathway. [7] This means that 
contributions of the existing pathways should be rearranged by adjusting the proposed 
set of rate constants.  
 
Conclusion 
 Complex periodic oscillations and transition dynamics is successfully simu-
lated numerically by an already known variant of the model for the Bray-Liebhafsky 
oscillatory reaction. Discrepancies from real experiments are found in that small-
amplitude oscillations emerge at the end of the reduction pathway, whereas they are 
found experimentally at the end of the oxidation pathway. To achieve a better agree-
ment, rate constants that were not determined experimentally should be adjusted.  
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Figure 1. Numerical simulations of the iodide-ion concentration oscillations (in 
mol×dm-3) (segment from 1000 to 1200 min). (a) and (d) the simple periodic oscilla-
tions, kf = 1.00×10-3 min-1 and kf = 5.14×10-3 min-1, respectively; (b) and (c) the mixed 
mode oscillations, kf = 4.90×10-3 min-1 and kf = 5.13×10-3 min-1, respectively;. T = 333 K. 
[H2O2]0 = 1.55×10-1 mol/dm3; [KIO3]0 = 4.74×10-2 mol/dm3; [H+]0 = 9.58×10-2 
mol/dm3; the rate constants and other initial conditions are taken from ref. [3]. 
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Figure 2. Bifurcation diagram with sta-

ble steady states (,), and envelop of  
large- and small-amplitude oscillations 
(−) where the small-amplitude oscilla-

tions are inside the large ones. 

 Figure 3. Phase space diagram for the 
case given in Fig. 1(c). 
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Abstract 
The analytical method for the determination of ascorbic acid (AA) based on the per-
turbation of the Bray-Liebhafsky oscillatory (BL) reaction by different amounts of AA 
is proposed. The method relies on the linear relationship between the maximal change in 
potential, defined as difference, ∆Em = Ep − Es, where Ep is the potential after perturba-
tions while Es is the potential of the steady state, and logarithm of the concentration of 
ascorbic acid. The calibration curve is linearity proportional to the logarithm of ascorbic 
acid concentration over the range 2.2 × 10-5 moldm-3 ≤ [AA] ≤ 2.0 × 10-3 mol dm-3. The 
detection limits is [A] = 2.0 × 10-5 mol dm-3. The proposed method was verified for 
ascorbic acid determination in pharmaceutical dosage forms.  
 
Introduction 
Ascorbic acid (AA) is an essential vitamin with recommended daily intake about 70 
mg. Continuing interest in the benefits of a well-balanced vitamin intake has resulted 
in the fortification of many food products with variety of vitamins, including vitamin 
C. On the other hand, vitamin C degrades quickly and therefore, there is special con-
cern regarding the shelf life of these fortified foods. Consecutively, the analytical de-
termination of them is of a significant importance. 
 On the other hand, the oscillatory chemical system as non-linear chemical sys-
tem in the states far from equilibrium may be utilized as matrix for analytical determi-
nations. Application of oscillation reactions to this effect originates from its complex-
ity and its implicitly extreme sensitivity to various perturbations [1-3]. 
 Here, the Bray-Liebhafsky oscillatory reaction [4], as the reaction where hy-
drogen peroxide decomposes into the water and oxygen in the presence of both IO-

3 
and H+ ions, is used as the matrix for micro-quantitative determination of ascorbic 
acid. This deceptively simple reaction proceeds through the complex mechanism in-
volving a number of intermediates, such as I-, I2, HIO and HIO2, etc., which makes it 
suitable for such analysis.  
 
Experimental 
The BL reaction was conducted in the Continuously fed well Stirred Tank Reactor 
(CSTR). The chosen dynamic structure for perturbation analysis is non-equilibrium sta-
tionary state that was found under the following experimental conditions: the mixed inflow 
concentration of reactants [H2SO4]o = 5.5 × 10-2 mol dm-3, [KIO3]o = 5.9 × 10-2 mol dm-3 
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and [H2O2]o = 2.0 × 10-3 mol dm-3, the specific flow rate jo = 2.95 × 10-2 min-1 and 
T =  42.9 °C.  
 Temporal evolution of the system was monitored potentiometrically by Pt 
electrode (Metrohm Model 6.0301.100) versus double junction Ag/AgCl electrode 
(Metrohm Model 6.0726.100) as a reference.  
 For ascorbic acid determination in pharmaceutical preparations, then tablets 
were weighed and average value per capsules was calculated. An amount equivalent to 
the average weight of one tablet (containing 1000 mg AA, according to the factory of 
declaration) is weighted out and diluted to volume with water in a 250 mL calibrated 
flask. Perturbations were performed by adding microvolumes, from 10 to 200 µL of 
the ascorbic acid stock solution and 20 - 450 µl of the samples by micropipettes. We 
applied manual injections of approximate duration of 0.5 s. 
  

Results and Discussion 
For AA determinations we used a general approach to the microquantitative analysis, 
which was realized by adding the analyte in matrix system that was found in the stable 
non-equilibrium stationary state in the vicinity of a bifurcation point. By introducing 
the analytes in matrix system a delicate balance among the species existing in the ma-
trix system may be disturbed. The species examined under these conditions, such as 
AA, need not to be essential for the matrix reaction system, but sufficient for reaction 
with the matrix.  
 The response of the matrix system after perturbation is followed potentiometri-
caly, and then the applied perturbation is monitored (Fig.1) A linear response of the po-
tential shift versus the logarithm of the concentration of ascorbic acid (Fig.2) is found in 
the following range: 2.2 × 10-5 moldm-3 ≤ [AA] ≤ 2.0 × 10-3 mol dm-3. The regression 
equation of the standard series calibration curve, ∆Em = 62.6 +11.1 × log cAA (Fig. 2), 
obtained by analyzing the potential response curves that is received after perturbing a 
stable non-equilibrium stationary state with additions of different concentrations of 
ascorbic acid. The maximal change in potential, defined as difference, ∆Em = Ep − Es, 
where Ep is the potential after perturbations whereas Es is the potential of the steady 
state (Fig.1). The response of the matrix system after perturbation is followed potenti-
ometricaly, and then the applied perturbation is monitored. A linear response of the 
potential shift versus the logarithm of the concentration of ascorbic acid (Fig. 1) is 
found in the following range: 2.2 × 10-5 moldm-3 ≤ [AA] ≤ 2.0 × 10-3 mol dm-3. 
 

 

Figure 1. Typical response curves 
obtained after perturbing the station-
ary state in the BL reaction by addi-
tion of different concentrations of 
AA (on the left to the right): 6.7×10-7 
moldm-3, 1.9×10-4 moldm-3 and 
5.8×10-4 moldm-3

 

The detection limit defined as the concentration of ascorbic acid, that produce a sig-
nal-to-noise ratio of 3, is [AA] = 2.0 × 10-5 mol dm-3.  
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Figure 2. A standard series calibration 
curves for ascorbic acid 

 

 The applicability of the method for the assay of the sample was tested with 
Vitamin C (Hemofarm, Vršac, Serbia & Montenegro), Table 1. The low value of SD 
and RSD less than 5 % as well as recovery lying in stated range (Ph EUR 97) indi-
cated good application of the method. 
 

Table 1. Precision and recovery of ascorbic acid in pharmaceutical dosage form 
Sample  Concentration 

(mol dm-3) 
Found±SD 
(mol dm-3) RSD (%) Recovery (%) 

 1.11×10-5 (1.14±0.03) ×10-5 2.8 102.4 
Vitamin C 5.10×10-5 (4.84±0.14) ×10-5 2.9 96.9 
 1.52×10-4 (1.49±0.71) ×10-4 4.8 98.0 
 

Conclusion 
A new kinetic procedure for determination of ascorbic acid, based on specific features 
of non-linear chemical systems in states far from thermodynamic equilibrium, is de-
scribed. The Bray-Liebhafsky oscillatory reaction is used herewith as a matrix for AA 
determination. The reaction was run under the open conditions in the CSTR. The sta-
tionary state, sustained by the flows, was perturbed by additions of microvolumes of 
AA. The subsequent response of the system was monitored potentiometrically and 
analyzed. The proposed method for AA determination is simple, fast, accurate and 
precise - the unknown concentrations of AA can be determined from the standard se-
ries calibration curve within the accuracy of ± 5 %, and the detection limit is cAA = 2.0 
× 10-5 mol dm-3. The described method was applied for AA determination in pharma-
ceutical preparations. 
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Abstract  
Possible influence of quantum entanglement contributing to conformational scaling in 
highly organized biopolymer systems as protein  globule is considered. It can provide 
fundament for understanding specific, crystal-like density and liquid-like dynamics in 
globule interior in particular strong and direct coupling of different parts of the mole-
cule and "entropy  traps" as well   
 
Introduction 
Recently, a number of papers offered the first look at fine structure of several classes 
of enzymes that catalyze some of the most complex reactions in biology. For example, 
in a series of papers D. W. Cristiansen.at al, J. P. Noel at al. and G. E. Schultz at al 
presented the structure of terpenoid cyclase enzymes (TCE), and pointed to some key 
features of enzyme catalysis in general [1]. The conformational structures of enzymes 
considered are surprisingly similar, although their amino acid sequences are quite dif-
ferent and they make quite different products. Such conformational similarities seem 
to characterize protein molecules in general. Prokaryotic c-type cytochromes from a 
variety of organisms in  molecule conformation  resemble each other and those of eu-
karyotes even though there are few similarities among their amino acid sequences. 
Reasons for such  conformational scaling are not quite clear. 

Conformation is considered at present as one of the most fundamental feature 
of polymer chains[2] and conformational hierarchy (secondary and tertiary structure) 
of proteins build the fundaments of structural biochemistry. But, interpretation of is-
sues presented above varies very much. Some authors take it as a proof that conforma-
tional organization is much more important then the chemical structure for function of 
biomolecules e.g. all citochromes have the same task in organisms but a variety of 
constitutions. The other believe that  similarity results from conservation during evolu-
tionary change .It could be understood if the tertiary structures are generated only dur-
ing synthesis, what automatically transfer the problem to the fast growing field of fun-
damental genetics. But, after the famous Alfinsen experiment , we mast keep in mind 
that generation of tertiary structure is possible (at least in principle) also by folding of 
protein molecules from denatured state to its native space structure, i.e. by conforma-
tional selforganization. Needless to say that it is quite a tough problem from the point 
of view of molecular mechanics, but it rises a number of challenging  issues for poly-
mer science. Here will be presented some new aspects and possible solutions  based on 
organization scaling of polymer systems . 
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Formulation of the Problem 
All TPE considered bind a substrate in the active site cavity which is mainly non -
polar, but has a highly polar parch at the top, and is lined by numerous aromatic resi-
dues. The substrate binding in a right starting conformation is followed by channeling 
the conformations of reactive intermediate [1]. But, how they are "channeled" is not 
quite clear, in particular a role of aromatic residues. According to Schulz, residues lin-
ing the cavity of squalene cyclase are well conserved, but show a gradient with higher 
conservation a the top and lower at the bottom, indicating occurrence of the first reac-
tion step at the polar top where a general acid B1H protonates squalene at C3 and is 
finished by deprotonation at C29 of the hopenyl cation, by the general base B2 at the 
bottom. The aromatic residues  "could stabilize the carbocationic intermediates of cy-
clization by their π-electrons". Also Christianson proposed that Phe77 and Asn219 pro-
vide a template that channels reactive conformations of farnesyl diphosphate along the 
exclusive reaction coordinate to pentalene formation, stabilizing intermediates through 
favorable quadrupole-charge and dipole-charge interactions. That gives a reasonable 
presentation of the process in the sense of classical  organic chemistry, but does not 
say much about forces driving so stabilized structure down the chain and reasons for 
conformational similarity of all TPE. Moreover the base B2 mentioned above does not 
exist at all. The proton is transferred to a solvent molecules probably by concentrated 
polarization action of Gln262:Glu45:Glu93: Arg127. In that sense, focusing the internal 
and external fields of forces could be the reason for conformational similarity. After 
the first step of formation of the initial complex, some conformational changes are 
supposed to occur to allow the right position of the appropriate functional groups at 
the active site forming preferential transition state. That nonequilibrium state is fol-
lowed by some bond-braking and chemical realization of possible (quantum ) events. 
W. Jencks described it as an "ideal mechanism" of enzyme catalyses. The process can 
be produced by conformational alteration of the substrate so as to increase the stability 
of the transition state, which may help to mobilize the nonequilibrium state although 
such couplings have not been indicated by study of structural details. Then, it has been 
suggested that the oscillation of an enzyme between two conformations differing in 
their strain would provide an ideal mechanism for catalysis if such oscillations could 
be induced by some driving force. However, the nature of this driving force has not 
been identified and according to Jencenks, "such oscillations would require a mecha-
nism for the focusing or coordinating of thermal energy in a cooperative manner 
which has not jet been clearly envisioned". Moreover, this energy should be delivered 
in such way to support conformational movements and chemical changes been some 
times of opposite directions. In the oscillating enzyme model this would mean the 
need of a strong and direct coupling between different parts of the macromolecule, a 
very unlikely event from classical point of view. As the third, enzyme catalyzes works 
under very mild process conditions with very low enthalpy contribution to the fee en-
ergy, or in other terms with "entropy traps" at the active site. What kind of force sup-
port such traps for enzyme-substrate complex? 
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The Theory 
It is well known that in a dissipative system, namely and opens far-from equi-

librium system, there arises a dynamic order, a coherent behavior of the ensemble 
when the values of the system's parameters corresponding to instabilities are exceeded. 
Such situations typical for open far-from equilibrium systems are often  described in 
terms of macroscopic thermodynamic variables. A dynamic order appears as a result 
of the increase of fluctuation up to the macroscopic level. But, let us consider effects 
of the primary fluctuations on the other side of scale of our systems. Generally the cri-
terion for the possibility of emergence of dynamic order, in a dissipative system is the 
failure to satisfy stability conditions. According to Prigogine theorem, the dependence 
of the dissipation function σ,  on the parameter κ that defines the open- near -to -
equilibrium  system has a minimum value σ0 in the stationary state κ = κ0. When κ 
deviates from κ0 the system returns to the state κ0 exponentially, without experiencing 
oscillations. Let us suppose that it is valid on the other side of the scale. Details of 
scale properties will be presented later, when necessary. If the system is characterized 
by many extensive variables the change of its entropy S with time is expressed by 

 j
j

j JX
dt
dS ∑=  (1) 

where X and J are the general forces and general fluxes from Onsager theorem. The 
entropy change in an open system is made up of the entropy production inside the sys-
tem di S and the entropy flow de S, and we write dS = di S + de S. According to the Sec-
ond law of thermodynamics  

 ∫ ≥∗= 0dV
dt

Sdi σ  (2) 

Now we can write  
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and for system change in time  
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under constant boundary conditions we have 

 0≤
dt

d Xσ  (5) 

This yields the stability condition for the steady-state under consideration  
 0≥∑ j

j
j XJ δδ  (6) 

where δ Jj and δ Xj are the deviations of generalized flukxes and forces from their 
steady-state values.  
 Let us now define the scale more precisely according to M. Volkenshtein, 
conformational energy can be represented in terms of structural element interactions as 
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Econ. = Enn + Ene + Te + Eee , where Enn represent energy of nucleus to nucleus interac-
tion, Ene corresponding  electron nucleus interaction etc. But according to Einstein pa-
per with Podolsky and Rosen in 1935 and recent experimental evidence particles in 
general (e.g. atoms, ions, photons etc.) can be quantum entangled (QE). Especially in 
condensed matter, the existence of QE follows from the first principle of quantum dy-
namical evolution. For example let ΨA and ΨB the state vectors of two particles 
(quasi-particles, dressed particles, subsystems etc.) A and B. The two systems (parti-
cles) having Hamiltonians HA and HB interact either directly or indirectly with the 
interaction Hamiltonian VAB ≡V(qA, qB,qenv), where qX is dynamical variable of 
system X, qenv refers to the additional degrees of freedom, usually called the in en-
vironment. For t > 0 the complete evolution operator of the QE system 
UAB(t)=exp{-i(HA+HB+VAB)t / }, does not factorize in to a product of two individual 
evolution operators UA and UB, and  

 ( ) ( ) ( ) ( ) ( )tttUt BAABABAB ''0 Ψ⊗Ψ≠Ψ=Ψ  (7) 

For many particles in the bulk of dense, ordered systems Eq.( 7) could be expected 
valid. But not for dense but conformational specific interior of enzymes.(see Eq .5) So 
decoherence in enzyme interior produce interaction conformational Hamiltonian 
Vent = CKK⊗DE , contributing specifically to fluctuation forces in Eq. 6.HereC is the 
coupling constant, and KK = iK

i
Kii kkk∑  is conformation observable of the quan-

tum system and DE is arbitrary observable of the environment. 
 
Conclusion 
The high conformational similarity of tertiary structures of several classes of enzymes 
and the fact that peptide in general are able to build the native tertiary structure by self 
organization in renaturation process, indicate that such a conformational scaling is not 
a byproduct of evolution dynamic, but essential feature of enzyme structure. It belongs 
to a global type of structure in terms of scaling concept and can be treated even ex-
perimentally according to common dynamical methods for polymers, but it influence 
dynamics of enzyme catalytic processes as well. Moreover, it seems that scaling sup-
ports dynamic order of tertiary structure influencing fluctuations on different levels, 
starting from very fundamental quantum coherence principles. It can be pronounced, 
at least in crude through differences in particles decoherence in enzyme interior envi-
ronment, compared to other highly ordered bulk polymer structures.  
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Abstract 
The selforganization and radical polymerizations of compressed ethene gas and liquid 
methylmethacrylate and Ziegler-Natta polymerization of adsorbed olefins are pre-
sented. 
 
Introduction 
All classical explanations of polymerization [1] propose that polymer chain propagates 
by addition of one by one monomer molecule to the growing chain (1). The same 
process can be presented as (2) where Pn* represents cation, anion or radical of grow-
ing chain and M represents individual monomer molecule. 
 
R-(CH2-CHR)n-1-CH2-CHR* + CH2=CHR → R-(CH2-CHR)n-CH2-CHR*            (1) 
 
Pn* + M →   Pn+1*                  (2) 
 

There are some cases (solid, liquid and adsorbed monomer systems), however, 
with monomer molecules that are organized and exist as the clusters of m molecules 
(mM). Kargin and Kabanov [2] developed a theory of organized monomer polymeri-
zation (TOMP). According to them, each cluster behaves as a single physical and 
chemical entity and the whole cluster mM is enchained at once in a single propagation 
step (3). The fundamental difference between (2) and (3) is that the propagation is 
random on the molecular level in the first case (2), while it is determined on the mo-
lecular level but random on the supra-molecular level in the second case (3). In the 
first case (2), one by one repeating unit of polymer chain is formed, while in the sec-
ond case (3) one by one chain segment is formed. Hence, in the second case (3) the 
both polymerization kinetics and polymer structure (Mn, MWD, stereoregularity, re-
gioregularity etc.) depend on the organization and arrangement of monomer molecules 
in those clusters. 
 
Pn* + mM ---->   Pn+m*                  (3) 
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Here we present how this concept has been applied to explain radical polymerizations 
of compressed ethene gas and liquid methylmethacrylate (MMA) and Ziegler-Natta 
polymerization of olefins adsorbed on the support surface. 
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Free Radical Polymerization of Compressed Ethene Gas 
 

It is known that ethene can polymerize by free radical mechanism at the very high 
pressures. We have explained [3] that the role of pressure is to enable formation of 
various supra-molecular species (Fig. 1). The basic rule is: by increase of pressure, i.e. 
by decrease of free volume, such species are formed that need less space for the 
movement. It was proved that a degree of order, presented by entropy of compressed 
ethene, has a crucial effect on polymerization mechanism and kinetics as well as on 
polyethylene structure and properties. 
 
 
 
 
 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) 
 
 
 
 
Figure 1. Ph

(mo

 

ase state (a) and supramolecular species (b) of compressed ethene gas 
lecular pair, bimolecule and oligomolecule, respectively) [3] 
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Selforganization and Polymerization of Liquid MMA 
 

Sasuga and Takehisa [4] found that planar molecules of MMA could be properly 
aligned producing ordered domains in liquid MMA (Fig. 2). We have developed a 
method [5] to calculate the fractions of molecules in ordered (Fig. 3, Xt,s line) and dis-
ordered domains (Fig. 3, Xb line). According to TOMP, initially the monomer mole-
cules in disordered domains should polymerize followed by polymerization of mono-
mer in ordered domains. We have proved experimentally [5] that the calculated frac-
tions are equal to the experimentally determined fractions of polymerized monomer in 
ordered and disordered domains (Fig. 3, points). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Supramolecular organization of liquid MMA [4] 
 

Fi
gure 3. Fractions of ordered (Xt,s) and disordered (Xb) domains of liquid MMA  
at different temperatures [5]. (Solid lines: predicted by calculation;  

Points: experimental determination by polymerization) 
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Monomer Selforganization and Polymerization by Ziegler-Natta Complexes 
 

Recently a new charge percolation mechanism (CPM) of olefin polymerization by 
supported transition metal (Mt) complexes has been presented [6]. Different oxidation 
states of Mt are obtained by activation, i.e. Mt+(n-1), Mt+(n) to Mt+(n+1), producing irregu-
lar charge distribution over the support surface. The tendency to equalize the oxidation 
states by a charge transfer from Mt+(n-1) (donor) to Mt+(n+1) (acceptor) cannot be ful-
filled since they are immobilized and highly separated on the support. But, monomer 
molecules are adsorbed on the support producing the clusters with stacked π-bonds 
making a π-bond bridge between donor and acceptor (Fig. 4). Once a bridge is formed 
(percolation moment), a charge transfer occurs. Donor and acceptor equalize their oxi-
dation states simultaneously with the polymerization of monomer. Polymer chain is 

desorbed from the support making the 

surface free for the subsequent 
monomer adsorption. The whole 
process is repeated by oxidation-
reduction of another donor-acceptor 
ensembles. The theory of active cen-
ters ensembles (developed by Ko-
bozev in 1939) has been applied to 
confirm CPM by experimental data 
and by computer simulation. 
 
 
 
 
 
 

Figure 4. Monomer selforganization 
and charge percolation mechanism of 
Ziegler-Natta polymerization (upper) 
and polymer detachment (below)[6] 
 

 
Conclusion 
Monomer selforganization has a decisive effect on mechanism and kinetics of po-
lymerization as well as on the structure and properties of polymer. 
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Abstract  
This paper presents new results on the application of algebraic techniques of polyno-
mial elimination to the analysis and global solution of mass-action-law kinetic models. 

Introduction  
Differential equation models of chemical kinetics demonstrate a spectrum of non-
linear phenomena, from steady-state multiplicity to self-oscillations and chaos. 
Polynomial models represent common and important subset of general non-linear ki-
netic models. At the same time, they allow application of special algebraic techniques. 
These methods provide a comprehensive solution to problems such as global numeri-
cal solution and analysis of common bifurcations. Classic chemical kinetics assumes 
Mass Action Law (MAL) for the rate w of reaction step 
 ∏= i

ickw α , (1) 
Where ci is concentration of ith reagent, αi is its stoichiometric coefficient, k is the 
reaction constant. MAL steady-state model is a system of multivariable polynomial 
equations. Solution of polynomial systems is the subject of elimination theory devel-
oped by Bezout, Sylvester, Cayley, Macaulay, Kronecker, and Hurwitz. Recent renais-
sance of the almost forgotten elimination theory is concerned with Newton polytope 
approach developed in [1].  
We are going to apply both classic and modern elimination theory to the non-linear 
steady state problem from chemical kinetics. Our model is an algebraic system corre-
sponding to Quasi Steady State Approximation (QSSA) of differential equations of 
chemical kinetics. 
 
QSSA system Material balance in the system where QSSA is applied to concentra-
tions of intermediates can be presented in the form 

 
,0)(

,)(
=

Ν=

zL
Wzw

 (2) 

where z  is a vector of intermediate concentrations, ( )w z is a vector of rates of (re-
versible) elementary reaction steps, ( )L z is a vector of B linear balances of intermedi-
ate concentrations, matrix  N is composed of P = S – (J – B) vectors of stoichiometric 
numbers p

sν (s=1,…,S; p=1,…,P), S is the number of reactions, J is the number of in-
termediates. Each v column vector is called reaction path; vector W  is composed of P 
rates along the reaction pathway. Linearly independent reaction paths form the 
stoichiometric basis.  
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Kinetic polynomial  Polynomial systems allow variable elimination. Our previous 
studies [2] were concerned with understanding the resultant of system (2) in reaction 
path rate W (we studied the case of P=1).  Resultant (the kinetic polynomial) is a 
polynomial in terms of W. Vanishing of resultant is a necessary and sufficient condi-
tion of system (2) solvability.  Resultant in terms of W allows the formulation of 
QSSA conditions in terms of experimentally measurable variable W. This equation is 
symmetric in terms of reaction parameters, and it has a thermodynamic interpretation. 
We have proved that the resultant’s constant term always contains multiplier (the cy-
clic characteristic) 

  (3) ∏∏
==

−=
S

s
s

S

s
s

ss rfC
11

,νν

where  are reaction weights (i.e. reaction rates at unit intermediate concentra-
tions) of sth forward and reverse reaction.  Equation C = 0 is equivalent to the ther-
modynamic equilibrium condition for net reaction. Stoichiometric numbers entering 
formula (3) are relatively prime (i.e. resultant’s constant term corresponds to the net 
reaction equation obtained for minimal integral stoichiometric numbers). Further de-
velopment of the theory resulted in explicit formulas for all resultant coefficients. This 
approach permitted computer algebra implementation [3]. Variable elimination proved 
to be effective in applications ranging from inverse kinetic problem to bifurcation 
analysis [2-4]. 

ss rf ,

Results and Discussion 
 

Multidimensional resultant formulation  Bezout theorem gives the simplest estimate on 
the number of (complex) zeroes of system (2). Let us define the reaction order  as the 
maximum of orders of forward and reverse reactions. Index 

sd
µ  is assigned to the ele-

mentary step with a non-zero stoichiometric number that has the smallest reaction order 

(the minor reaction). Let  . For the single-path mechanism we have ∏
≠

=
S

s
sdL

µ
µ

 

Proposition 1. If P=1, the number of system (2) complex zeroes is less than or equal 
to . µL
 
In the general case, we have 
 
Proposition 2. If P > 1, the number of system (2) complex zeroes is less than or equal 
to , where µ  is defined as  µL

.0:minmaxarg ≠= p
sssp

d νµ  

Proposition 2 estimate depends on a particular stoichiometric basis. There exists a ba-
sis that produces the sharpest estimate.  
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Variable elimination reduces system (2) solution to solving a single polynomial in one 
unknown. Other unknowns can be found either by using resultant properties or by it-
eration of elimination procedure. We could also apply the standard methods as Groeb-
ner bases. Implementation of these approaches requires computer algebra. Straight-
forward application of computer algebra results in a slow, unstable, and unreliable 
procedure. However, no explicit resultant expression is required to solve system (2) 
numerically. Multidimensional resultant matrix can be built instead. We have proved 
that for a certain class of systems (the non-degenerate systems, see [3]) this matrix 
would be non-singular. Non-singular resultant matrix allows us to solve system (2) 
using exclusively numerical linear algebra. The solution of system (2) is reduced to an 
algebraic eigenproblem.  
 
Proposition 3.  Reaction rate can be found as a solution of order eigenproblem. µL
The matrix formulation allows us to locate all roots counted by the Bezout theorem.  
 
Example  One of possible Macaulay matrices for system  
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corresponding to the two-stage mechanism of catalytic reaction, is the matrix 
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Reaction rate W can be found as a solution of order 2 eigenproblem with matrix 
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derived from matrix M(W) . An eigenvalue is )2/(1 W−=λ . 
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Cayley trick, circuits and cyclic characteristic  Although the classic Macaulay method 
allows effective solution of systems (1), the most promising approach is concerned 
with sparse formulation. Our first result in this direction is the proof of kinetic poly-
nomial thermodynamic property (3) based on A-discriminant theory [1]. The Cayley 
trick reduces the problem to the analysis of the discriminant of a specific polynomial. 
Monomials of this polynomial form a circuit. Informally, the circuit is a point configu-
ration obtained from the simplex by the addition of a single point. The circuit explains 
the appearance of the cyclic characteristic (3) in the constant term of the kinetic poly-
nomial. We could say that pure topology governs the connection between thermody-
namics and kinetics, encapsulated in property (3). 

Conclusions 
We have developed a new method of numerical solution of QSSA equations utilizing 
multidimensional resultant matrices. We have found the topological interpretation of 
properties of the kinetic polynomial. 
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Abstract 
Models of homogeneous explosions and one-dimensional laminar flames of hydrogen 
and methane were analysed by a series of mathematical tools. The results indicated 
that the real dynamical dimension of these systems is 1 to 3, while the number of vari-
ables is from 10 to 38. This dimension reduction indicates strong couplings in the 
model, exhibited in the similarity relations among the sensitivity functions. It has con-
sequences in areas of practical importance, like determination of rate parameters from 
experimental data or search for a minimal equivalent model. 
 
Introduction 
Selforganization is usually investigated in solution phase chemical or biological sys-
tems. In this paper we should like to demonstrate that some high temperature gas-
phase chemical kinetic systems are not only highly non-linear, but also may show sur-
prising signs of selforganization.  

The systems investigated were the homogeneous explosions and one-dimensional 
laminar flames of hydrogen and methane. We have investigated both freely propagat-
ing and burner stabilized laminar flames. The methane combustion simulations used 
the Leeds Methane Oxidation Mechanism [1], [2], which contains 37 species and 350 
(irreversible) reactions. The hydrogen oxidation calculations were carried out with a 
subset of the Leeds Mechanism, having 9 species and 46 reaction steps. 

The number of variables of the explosion and flame models was equal to the 
number of reactive species plus one when temperature was also calculated. It has been 
shown recently, that the real dynamical dimension of high temperature chemical ki-
netic systems is lower; in the case of the adiabatic explosion of hydrogen it is one in-
stead of ten and in the case of the adiabatic explosion of methane it is three instead of 
38. The reason of this huge dimension reduction is the existence of low-dimensional 
slow manifolds in the variable space of high-temperature chemical kinetic systems.  

Lam and Goussis [3] have investigated the presence of different time-scales in a 
series of single points of the variable space. Roussel and Fraser [4] described the evo-
lution of kinetic systems in connection with slow manifolds. They stated that the exis-
tence of very different time scales in chemical kinetic systems causes the trajectory of 
the solution to move on slow manifolds. The trajectory originally moves on an N di-
mensional manifold, but as time advances usually the dynamical dimension of the 
movement decreases and after some time the trajectory moves close to a two-
dimensional surface (curved plate), then close to a one-dimensional curve, and finally 
arrives to the zero-dimensional equilibrium or stationary point if it exists. Maas and 
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Pope [5] elaborated algorithms and computer codes for the approximate numerical 
calculation of slow manifolds. They also studied the existence of manifolds in several 
combustion models and generated reduced models having few variables only.  

We have shown [6], [7] that the presence of low-dimensional manifolds in the 
composition space of dynamical systems may result in the similarity of local sensitiv-
ity functions, which is a sign of several unusual features of such systems. Sensitivity 
analysis investigates the effect of parameter change on the solution of mathematical 
models. The local sensitivity coefficient si,k = ∂Yi/∂pk shows the effect of the minor 
change of parameter pk on model result Yi. In the case of a general model, no relation 
can be expected among the rows and columns of a local sensitivity matrix. However, 
the sensitivity functions may exhibit three types of similarity. 

 
The Similarity of Sensitivity Functions 

The local sensitivity functions ( kiik / pYs ∂∂= ) of chemical kinetic models may 
show the following types of similarity: 
(1) Local similarity: ( ) ( ) ( )zszsz jkikij =λ  is equal for any parameter k, but depends 
on the results Yi and Yj investigated, 
(2) Scaling relation: ( )zijλ  is equal to ( )( ) ( )( )zzYzzY dddd ji , 

(3) Global similarity: ( ) ( )zszs ilikkl =µ  is constant in a range of the independent 
variable z (time or distance). 

 
Scaling relation and global similarity (the latter under the name of self-similarity) 

have been described [8], but local similarity existing without scaling relation was de-
tected by us.  

Similarity of local sensitivity functions was investigated in hydrogen−air explo-
sion and flame models. A series of models were created, consisting of homogeneous 
explosions and burner-stabilized and freely propagating flames. In all the cases the 
temperature profiles were either calculated using the assumption of adiabatic condi-
tions, or these profiles were fixed to the previously calculated ones. All calculations 
were carried out at four different equivalence ratios (ϕ = 0.5, 1.0, 2.0, and 4.0). Care-
fully choosing the initial and boundary conditions, the results of all these models could 
be meaningfully compared. In the cases of the adiabatic explosions of hydrogen−air 
mixtures, all the three types of similarity were found. In other cases, either similarity 
existed only for some parameters or no similarity was found for any of the parameters.  
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Figure 1. Local sensitivity functions of the mass fraction of OH with respect to the 
natural logarithm of the 46 pre-exponential coefficients of the reaction steps as a func-
tion of temperature, calculated for the adiabatic explosion of hydrogen−air mixtures for 

equivalence ratios ϕ = 0.5, 1.0, 2.0 and 4.0. The sensitivity curves end at the burnt 
equilibrium temperature. 

 
Adiabatic explosions of methane−air mixtures were also investigated and local 

similarity was found. The calculations were carried out using three different mecha-
nisms; the similarity relations were similar in all the cases showing that this feature 
does not depend on the details of the reaction mechanism. 

The consequence of the global similarity of the sensitivity functions is that mod-
els with different parameter sets can give almost identical simulation results for all 
variables in a wide range of the independent variable. This statement was illustrated 
with a series of numerical experiments using modified hydrogen and methane oxida-
tion mechanisms. We have called the attention to the possible problem that using a 
chemical kinetic model of global similarity, fitted rate coefficients can be determined 
with large error, while this is not expressed in the deviation of the experimental and 
fitted model results.   

Based on the theory of slow manifolds, an explanation was given to the local 
similarity and the scaling law. We have shown that scaling relation appears if the tra-
jectory of the simulation is close to a one-dimensional slow manifold. Global similar-
ity appears if the sensitivity functions are locally similar and the sensitivity ODE is 
pseudohomogeneous.  

 
 

 136



SELFORGANIZATION IN NONEQUILIBRIUM SYSTEMS  

Couplings among the reaction steps and the minimal size of the mechanisms  
In the case of adiabatic models, heat effect of a reaction step may change the tempera-
ture of the reaction mixture, thus affecting the rate of others. This is called the thermal 
coupling among the reaction steps. In the case of models of spatially inhomogeneous 
systems, a reaction step at one location may produce a reactive species that increases 
the rate of other reaction steps at another location. This is called the diffusion coupling 
among the reaction steps. We have investigated the thermal and diffusion couplings 
among the reaction steps of hydrogen combustion models [9]. 

Reduced mechanisms were created using the principal component analysis of the 
local sensitivity matrix (PCAS method) and that of the rate sensitivity matrix (PCAF 
method). Global similarity was found to appear in the results of the PCAS method and 
its origin was explained. Our calculations indicated that the PCAS and PCAF methods 
have the same efficiency in mechanism reduction and produce the same results; nei-
ther the thermal coupling nor the diffusion have impact on the importance of the reac-
tions at the oxidation of hydrogen. A 31-step minimal reduced mechanism was created 
that described the combustion of hydrogen at all conditions investigated. The same 
reactions were important in homogeneous explosions and flames, therefore diffusion 
coupling did not influence the importance of reactions. The same reactions were im-
portant in burner-stabilized and freely propagating flames, although the corresponding 
sensitivity functions were very different. Rich flames could be modelled by much 
fewer reaction steps than the stoichiometric and lean ones. Instead of the original 46-
step mechanism, the combustion of hydrogen could be described by 15-step to 28-step 
mechanisms at the various conditions investigated and a 31-step mechanism could 
replace the original mechanism at all conditions studied.  
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Abstract 
The effect of fluctuations on the dynamics of a model thermochemical system with 
three stationary states exhibiting two types of bistability (the coexistence of two stable 
focuses and the coexistence of stable focus with stable limit cycle separated by saddle 
point) and excitability is investigated by the master equation approach. This effect is 
important when the system is close to the supercritical Hopf bifurcation and to the 
disappearance of the stable limit cycle through the homoclinic orbit. In the last case 
the distribution of the first passage time from the stable limit cycle to the stable focus 
exhibits a few peaks. The dependence of this distribution on the number of particles is 
investigated.  
 
Introduction 
Fluctuations can qualitatively change the dynamics of nonlinear, far-from-equilibrium 
chemical systems which are close to bifurcations. We study the effect of fluctuations 
in a model of thermochemical system. The system has three stationary states, two of 
them may be stable or unstable nodes or focuses and the third one is a saddle point. 
Changes of a bifurcation parameter cause the following sequence of bifurcations. One 
of the stable focuses becomes unstable and a stable limit cycle with “radius” growing 
from zero appears (the supercritical Hopf bifurcation). With increasing of the bifurca-
tion parameter, the “radius” of the stable cycle grows. In some interval of the bifurca-
tion parameter the system has two attractors: the stable limit cycle and the stable fo-
cus. At some critical value a homoclinic trajectory appears. The stable limit cycle dis-
appears and the other stationary state remains the sole attractor.  
 
Model 
A well mixed system which exchanges energy with its surroundings is considered [1]. 
Boundaries of the system are kept at constant temperature Tb. The system is composed 
of the reactant A, the product B and the catalyst C. The following reactions occur in 
the system: 

 ,1A C B C Q
k

+ ⎯⎯→ + +  (1) 
 

 2B A
k

⎯⎯⎯→  (2) 
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The first reaction is exothermic with the reaction heat Q. We assume that the second 
reaction occurs on the walls of the system and it imitates an unspecified mecha-
nism allowing for the supply of the reactant A and the removal of the product 
B. The composition of the system is uniquely determined by the concentration of A. 
The system exchanges energy with surroundings by the Newtonian heat flow through 
the boundaries. The rate constants and the coefficient of heat exchange can be pre-
sented in the following form: 

 
1/ 2

0
1 1 exp A

b B

ETk k
T k
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠ T ⎟  (3) 

 2 Bk pκ=   (4) 

 
1/ 2

0

b

T
T

κ κ
⎛ ⎞
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⎝ ⎠

 (5) 

 
where EA is the activation energy, and pB is a probability of reaction (2). Using dimen-
sionless variables nnA /=α  and ,/ nnC=η  (the molar fractions of A and C, respec-

tively), bTT /=θ  and , the dynamics of the system is described by the fol-
lowing equations:  

tnkt 0
1

' =

 [ 2' exp( / ) (1 )d c
dt
α ]θ αη ε θ α η= − − + − −  (6) 

 [ 1'
2 exp( / ) ( 1)  
3

d q c
dt
θ θ αη ε θ θ= − − ]−

,

 (7)  

where: /A B bE k Tε =  and c1 , c2 are constants. The reaction heat / B bq Q k T=  is the 
bifurcation parameter. In the sequel we assume that 8ε = , 0.1η = , 

, and 4
1 4.747166 10c −= × 4

2 6.048452 10c −= × . For these values of the parameters 
the stationary states have the following coordinates: 

1 1 1( 1.19273, 0.748734)SS θ α= = , ( 1.33333, 0.638381)sp spSP θ α= =  and 

3 3 3( 1.63333, 0.402924)SS θ α= = .  
For  the  becomes unstable focus and the stable limit cycle with “radius” 
close to zero appears due to the supercritical Hopf bifurcation. In this range of the 

 is the stable focus. With increasing q the “radius” of the limit cycle grows and at 
 the stable limit cycle touches the separatrices of the saddle point. In conse-

quence, the homoclinic orbit appears coming out and into the saddle point. The stable 
limit cycle disappears. For  the system has two attractors: the stable focus 

 and the stable limit cycle. Therefore, in this range the system is bistable. For 
 the system has one attractor but is excitable.  

1 4.75q ≅ 3SS
q

1SS

2 5q ≅

1 2[ , ]q q q∈

1SS

2qq >
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Results 
In the stochastic description, the state of the system is given by the distribution func-
tion P(θ,NA,t) of temperature θ and the population NA of species A. The dynamics of P 
is determined by the master equation [2]. We apply the Monte Carlo method to simu-
late the stochastic trajectories described by this equation.  

In the bistable system, the stochastic trajectory jumps between attractors. The 
figure 1 shows the time dependence of temperature on time for the case when the sta-
ble focus SS1 coexists with the stable limit cycle around the unstable SS3. Close to the 
bifurcation through homoclinic orbit, the limit cycle is relatively weak, and the resi-
dence times are much longer around SS1 than on the limit cycle.  
 

0 2000000
t'

1.0
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2.0

θ

 
Figure 1. 

 

The system escapes from SS1 when it crosses the separatrix on the boundary between 
the two basins of attraction. Near the bifurcation, the second separatrix, which sur-
rounds the cycle and subsequently forms the homoclinic orbit, also passes close to the 
stable focus. In some cases fluctuations can push the system across both of them, and 
then the trajectory does not enter the basin of attraction of the limit cycle, but instead it 
makes a single round ouside the cycle along the circulating separatrix. Thus, the large 
impulses observed in the evolution of the system resemble in some sense excitability 
of the stable focus SS1.  

From the ensemble of the stochastic trajectories we obtain the probability distri-
bution function P(τ) of the first passage times τ. The figure 2 shows P(τ) for transitions 
from the stable limit cycle to SS1, for three systems containing different number of 
particles (N). We count that the system leaves the limit cycle if it crosses the line θ = 
1.3, which is lower temperature than the limits of the basin of attraction of the limit 
cycle.  
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Figure 2. 

 
At each round the system has a chance to leave the limit cycle, but if during circula-
tions it does not leave the cycle before passing near the saddle point, then it makes the 
next round before it can leave the limit cycle. Therefore, the maximum probability of 
escape time returns periodically, and the probability distribution of τ exhibits several 
peaks separated by approximately equal time intervals. Such form of the distribution 
function reflects the circulations of the system on the limit cycle. The width of the 
peaks follows from dephasing of the stochastic trajectory on the limit cycle. The peaks 
are broader for small systems, because then fluctuations more easily wipe out the 
phase of the stochastic trajectory. For large systems the highest peak appears for 
longer time τ, because fluctuations become relatively weaker when N increases.  
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Abstract 
The population of synchronised cells of Dictyostelium discoideum is investigated as a 
candidate excitable medium for studies of controlled initiation of cAMP waves during 
aggregation stage of the organism’s morphogenesis. It has been found that cAMP 
waves are of a short range that can prove as unsuitable for controlled initiation ex-
periments. 
 
Introduction 
The population of starving cells of a slime mold Dictyostelium discoideum (DD) has 
been widely used as a model system for studies of nonlinear phenomena in biological 
systems. DD cells are amoeboid cells, that move independently in a population until 
the adverse living conditions (lack of nutrients) make them to develop a co-operative 
behaviour. After few (4 – 6) hours of starvation some cells become leading members 
of the population and start to periodically produce 3’,5’-cyclic adenosin monophos-
phate (cAMP). This substance is excreted to the extracellular space where it diffuses 
to other cells in the population. These cells respond to the increased concentration of 
cAMP in their neighborhood by i) the onset of cAMP synthesis and excretion and ii) 
chemotactic motion against the gradient of cAMP, i.e. towards the leading cells. The 
process repeats for a several hours period at the end of which the cells gather in 
mounds containing app. 105 cells. A morphogenesis of the organism is then triggered 
leading to the development of fruiting bodies carrying spores that preserve the organ-
ism’s life until the suitable living conditions are restored [1,2].  

In terms of dynamical theories of nonlinear systems, the population of starving 
DD cells represent an excitable medium through which the pulse waves of cAMP 
propagate. The leading members represent the regions of spontaneous oscillations that 
serve as a natural source of the waves. Detailed investigation of excitable properties of 
cAMP waves is often precluded by the fact, that waves arise randomly, both in time 
and space, that leads in formation of irregular wave patterns. The random character of 
the cell population behaviour results from the differences in the phases of the vegeta-
tive cycle at which cells are stopped at the moment of taking the nutrients away [3,4].  

In this paper we present results of the experiment where the cell layer was syn-
chronized by pulsing the cell suspension with the periodic addition of cAMP solution 
[5]. This method of synchronization has been commonly used when a chemotactic 
activity of DD cells is studied. So far, the synchronized culture was not used for ag-
gregation experiments.  
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Experimental  
The experiments were performed with AX2 strain of DD obtained from the laboratory 
of Prof. Peter Folk, Charles University, Prague. The cell culture was cultivated from 
spores in a liquid HL5 medium in a dark room at 21°C and harvested at the cell den-
sity 2 ÷ 6 x 106 cells/ml. After centrifugation and double washing with phosphate 
buffer the cells were divided in two portions that were treated separately. One half of 
cells, used as a control sample, was spread over a nutrition-free agar in a Petri dish 
while the second half was subject to synchronisation. The cell suspension was diluted 
to 5 x 106 cells/ml, placed on a shaker where it was treated with pulses of cAMP solu-
tion (10 µl; 30 µM) added every 6 min for 4 hours. The cell suspension was then cen-
trifuged and double-washed with phosphate buffer and spread on the nutrition-free 
agar on Petri dishes. Petri dishes with both synchronised and control cells were kept in 
the dark at 21 °C until the cAMP waves became visible. 

The cell layers on Petri dishes were observed both by dark-field photography 
and in a phase contrast under the microscope. Two CCD cameras connected to two 
PCs were used to record the development of cell populations. For evaluation the 
commercial software LUCIA [7] was used. Dark-field photography enable to observe 
the propagation of cAMP waves and the aggregation process; to observe next devel-
opmental stages the microscope has to be used.  
 
Results  and  Discussion 
Development of both control and synchronised cells is illustrated in Figure 1. In con-
trol cells (C-cells) the first waves were usually observed at around 6.5 hours after the 
beginning of starvation (Fig.1a). The development of synchronised cells (S-cells) 
started approximately 5 hours later, the time interval the cells spent in the shaken sus-
pension pulsed with cAMP solution. The first waves became visible at 10.5 hours. 
More wave emitting centres form in S-cells and the waves span over shorter distances 
than in C-cells (cf. Fig. 1a and b). The aggregation territories emerge at approximately 
same time in both C and S cells, i.e. at around 11 and 12 hours, resp. The population 
of C-cells breaks-up to large territories within which the cells form streams along 
which they crawl to the centre (see Fig. 1b). The aggregation territories in the popula-
tion of S-cells are small and, very soon, they break down to a large number of mound 
clusters. No cell streams were observed (see Fig. 1d). The appearance of slugs in S-
cells is also delayed when compared to C-cells, though it seemed to catch up with that 
in C-cells (19 h and 21 h, resp.). At the end of experiment (24 h) fruiting bodies were 
formed in C-cells only.  
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Figure 1. Aggregation stage of control and synchronized cells. Panel sizes: 

20 x 39 mm. 
 
The most intriguing difference between developmental behaviour of C and S cells rely 
in the absence of cell streams in the S-cells population. Detail images of the aggrega-
tion process as seen under the microscope are shown in Fig. 2. We can see that in both 
C and S cells the large cluster of cells is first formed within an aggregation territory 
that later breaks down to many mounds. In C-cells, the aggregation territory ruled by 
one mound cluster consist of well packed cells in the centre and disintegrates into 
many thin, long branches or streams at the perifery. In streams, the cells are glued 
tightly together and piled on top of each other and, thus, the cell structure of the 
stream is indistinguishable (cf. Fig. 2b). In the population of S-cells, all cells move 
towards the centre as a crowd and, at the periphery, the individual cells are clearly 
distinguishable (cf. Fig. 2d). The cells are protracted, with many pseudopods and form 
short chains. Unlike in C cell population they do not glue together. 
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Figure 2. Mounds and streams in control [a),b)] and synchronized [c),d)] cells. 

Sizes of observation areas: a), c) 1.9 x 2.4 mm; b), d) 0.38 x 0.5 mm.  
 
Conclusions  
This paper focuses on comparing the development of control (C) and synchronized (S) 
populations of cells of slime mold Dictyostelium discoideum. It has been found that 
only short cAMP waves can propagate through S-cells populations. That makes the S-
cells unsuitable for detail investigation of cAMP wave propagation. Thus other ways 
of cell synchronization should be tried. 
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Abstract 
Using different concentrations of NH4Cl as an stimulant, four types of oscillations of 
transmembrane bioelectric potential has been observed on algal (Nittela) cells as a 
model system. Characteristics of oscillatons depends on NH4Cl concentration and 
generally, physiological state of observed cell i.e., different types of transmembrane 
transport process that are active during measurements. 
 
Introduction 
Ritmicity and oscillatory behavior are among principal characteristics of life. Oscilla-
tions of bioelectric membrane potential have been discovered fifty years ago [1]. Os-
cillations may be induced both by physical (mechanic, temperature, electric, light) and 
chemical (action of certain chemicals, change of concentration) factors [2, 4]. Here we 
describe induction of oscillations of transmembrane bioelectric potential with increas-
ing concentrations of NH4Cl, using freshwater alga Nittela as a model system. 
 
Results and Discussion 
Registration of oscillatory bioelectrical impulses of membrane potential has been per-
formed using microelectrode technique as described previously [3, 4]. Tab I. gives 
membrane status (membrane resting potential and cyclosis), before NH4Cl treatment, 
while Tab II.  gives characteristic parameters for different class of oscillations. 

On the bases of response to different concentrations of NH4Cl and oscliiatory 
period duration, four classes of oscillations may be observed. First class of oscillations 
(Fig. 1. a, Tab. II.I), is characterized by small number of impulses and short time 
(~25 min) of oscillations. Second class of oscillations (Fig. 1. b, Tab II.II) is character-
ized by longer oscillatory period (~40 min), and by changing in impulses intensity. 
Third class of oscillations (Fig. 1. c, Tab II.III) is characterized by presence of 
preoscillatory period of local impulses and longer time (~150 min). Fourth class of 
oscillations (Fig. 1.d, Tab. II.IV) is characterized by preosilatory period and very long 
time (~5 hour) of oscillations.  
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a 

 
b 

c 

 
d 

 
Fig. 1: Four class of oscillations induced by different concentrations of NH4Cl.    

a) 3.0 mM, b) 7.0 mM, c) 10 mM, d) 10 mM NH4Cl. 
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Appearance of oscillations depends on NH4Cl concentration (being more prob-
able at higher concentrations: 8-10 mM), and individual spike duration is between 2 
and 4 sec (sometimes longer: 6-8 sec). It is important to note that it is technically hard  
to get completely identical oscillations, due inaccuracy of electrode positioning. 

Characteristics of oscillatons depends on NH4Cl concentration and generally, 
physiological state of observed cell i.e., different types of transmembrane transport 
process that are active during measurements. 
 

Table I. 
Membrane  resting potential  

(ψm, mV) Cyclosis (µ/sec) Standard solution for 
bioelectric measurements 

Average values: 

-90 

-120 

-150 

 
45 

50 

52 

 
 

0.1 mM HCl + 1.0mM NaCl 

 

Table II.  

Oscillations 
class 

Membrane 
potential 

oscillation 
duration (min) 

Preoscillatory 
period duration 

(min) 

Oscillatory 
period 

duration 
(min) 

Single 
oscillation 
frequency 
appearance 
(osc/min) 

Oscillations 
relative 

amplitude 
(mV) 

NH4Cl 
conc. 
(mM) 

I 25.60 0.09 25.51 0.35 40.35 3.0 
II 38.04 0.00 38.04 1.31 Xav=49.67 7.0 

Whole 156.34   
I part     29.14 0.31 Xav= 44.20 III 
II part    51.34 

4.72 151.62 
0.16 Xav= 59.25 

10.0 

Whole 295.63   
I part     24.30 0.37 Xav=72.32 
II part    28.86 0.21 Xav=99.28 
III part   19.18 0.31 Xav=98.28 

IV 

IV part   25.63 

0.00 295.63 

0.16 Xav=66.00 

10.0 
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Abstract 
Modelling has proven to be valuable in understanding of the complex biological sys-
tems dynamics. We have developed a model of the hypothalamic-pituitary-adrenal 
system self-regulatory activity to describe empirically observed oscillatory behaviour 
of this neuroendocrine system. 
 
Introduction     
The hypothalamic-pituitary-adrenal (HPA) system operates as complex feedforward 
and feedback control system whose main purpose is to regulate wide variety of bodily 
processes, under basal physiological conditions or during stress, by regulating the 
level of plasma corticosteroids secreted from adrenal glands (see Fig.1). The hypotha-
lamic paraventicular nucleus (PVN) is part of the hypothalamus which controls the 
secretion of corticotrophin-releasing-hormone (CRH) and arginin-vasopressin (AVP) 
into the pituitary portal circulation, as well as other neuropeptides. CRH and AVP se-
cretion leads to pituitary release of adrenocorticotropin (ACTH) and consequential 
adrenal gland stimulation, with release of corticosteroids (glucocorticoids, whose main 
representative in humans is cortisol, and corticosteron in animals, and mineralocorti-
coids, whose main representative is aldosterone) from appropriate adrenal cortex 
zones (the zona glomerulosa and zona fasciculata respectively) [1]. The HPA axis ac-
tivity is restricted by negative glucocorticoid feedback at brain areas known to have 
mineralocorticoid (MR) and glucocorticoid (GR) receptors and to be involved in the 
control of the HPA axis: hippocampus, hypothalamus and pituitary [2-4]. Along with 
their negative feedback effects glucocorticoids can act positively on the CRH gene 
expression in the brain and placenta [4-6]. This positive feedback is life-sustaining as 
it keeps the organism responsive to acute stressors under conditions of chronic stress 
[5]. 

 
Results and Discussion  
Since GR is expressed in most peripheral cell types, but not in SCN neurons [7], we 
shall consider the control influences of the SCN on the secretion of CRH as an exter-
nal factor. Ultra-short feedback loops by which CRH and ACTH may influence their 
own production are also neglected here. AVP plays an important role in augmenting 
the actions of CRH in activating the HPA axis, especially in the chronic stress condi-
tions, but we are not describing AVP secretion because it has less effects on cortisol 
secretion when it doesn’t act in synergy with CRH, and because only some AVP se-
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creting neurons in hypothalamus are under the negative feedback effects of cortisol. 
Since cortisol is not the only physiologically active ligand of MR, we have considered 
aldosterone influences as well. 
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Figure 1. The hypothalamic-pituitary-adrenal system  
feedforward and feedback loops. 

Scheme 1. Model 

 
Aldosterone occupies some smaller, compared to total, number of the hippo-

campal MR, thus making them unable to bind cortisol. Aldosterone activation of the 
hippocampal MR influences GR activation in the hippocampus as well, “pushing” cor-
tisol that way, thus making its positive feedback stronger and negative feedback ac-
tions weaker. In the hypothalamus aldosterone makes negative cortisol feedback, ex-
erted through GR, stronger, and in the pituitary aldosterone influences could be ne-
glect in basal conditions. Under these assumptions, the processes taking place could be 
represented by the simplified model given in Scheme 1. 

Here letters B, A, G and M represent CRH, ACTH, cortisol and aldosterone 
plasma concentrations, while P1 and P2 represent  the products of ACTH and cortisol 
elimination, described by the last two equations of this model. The first equation de-
scribes basal CRH production from the PVN, the second one describes aldosterone 
production under the renin-angiotensin system control. The third equation represents 
ACTH production from the pituitary, stimulated by CRH and the following two are 
simplified descriptions of the cortisol and aldosterone production from adrenal cortex 
stimulated by ACTH. The sixth equation describes positive feedback actions of corti-
sol, acting through hippocampal GR to enhance CRH gene expression and consequen-
tially ACTH and cortisol production. The next one represents cortisol negative feed-
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back acting through hippocampal MR (where aldosterone and cortisol “fight for” the 
same receptors), as well as hypothalamic and pituitary GR. The kinetic equations as-
sociated with the model (Scheme 1) are: 

 

                                                            (1) 

0 1

2
1 2 3 4 6

2 2
2 4 5 7

2
3 5

( ) /

( ) /

( ) /

( ) / m

dB t dt k k B

dA t dt k B k A k A k AG k A

dG t dt k A k AG k MG k G

dM t dt k k A k MG

= −

= − − − −

= + − −

= + −
 
If we assume that CRH and aldosterone have much slower dynamics compared 

to ACTH and cortisol, we can take /dB dt 0=  and , 
and consider the dynamics of the two-dimensional “faster” system 

2
5 3/ 0 ( mdM dt k MG k k A= ⇒ = + )

 

                                                             (2) 
2

0 2 3 4 6
2

2 4 3 7

( ) /

( ) / m

dA t dt k k A k A k AG k A

dG t dt k A k AG k k A k G

= − − − −

= + − − −
 
The stability analysis and numerical simulations were performed (Fig.2). 
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Figure 2. Numerical simulation of the cortisol oscillations in time, obtained with back-

ward differentiation formulas - Gear's method, applied on the eq. 2. 
A(0)=0.04 mol dm-3; G(0)=0.04 mol dm-3; k0=2·10-4 mol dm-3 s-1; k2=3.125·10-4 s-1; 

k3=5·10-5 s-1; k4=2.5·102 mol-2 dm6 s-1; k6=2.5·10-3 s-1; k7=2.5·10-2 s-1;  
km=5·10-6 mol dm-3 s-1. 
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Conclusions   
The mathematical model of the HPA axis presented in this report is the first, to our 
knowledge, that takes into account the positive feedback effects of cortisol exerted at 
the level of hippocampal GR, where it stimulates CRH gene expression, thus stimulat-
ing ACTH and its own production, besides its well-known, classical, negative feed-
back effects at the level of hippocampal MR, and hypothalamic and pituitary GR, and 
the influence of aldosterone on these feedforward and feedback pathways.  
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Abstract 
The statistical correlation is used as a new quantitative description of the relation of 
the primary and secondary structure. 

Introduction 
It is known that protein primary structure determines its overall organization. In other 
words, the protein is capable of self-organizing in accordance with the information 
contained in its primary structure. Hardness on protein structure determination makes 
important the secondary structure prediction, as an intermediate step. Protein secon-
dary structure dependence on its primary structure has been described in [1], using the 
information measure that amino acid Rj carries about an element of secondary struc-
ture Si. Information measure depends on the mutual and single probabilities and it is 
computed according to 

 
)(

)|(
log);(

j

ij
ij SP

RSP
RSI =  (1) 

where Rj is amino acid at position j, and Si is a secondary structure type at position i. 
This measure is referred to as directional parameter. 

The information measure about the secondary structure type in position j con-
tained in a window of the range M around the position j is then denoted by  
I(Sj; Rj-M...Rj-1RjRj+1...Rj+M). That quantity is considered in [2] for fixed M=8, and it is 
approximated by 
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The idea of secondary structure prediction is to choose the secondary structure 
type that maximizes this sum. More precisely, secondary structure is predicted in [2] 
using the relation 

 .);(1)......;(
1

)1(11 ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

−+=

=

=

−−=++−−

s

s

nki

ki
Sij

s

jk

njkMjjjjMjj DCRSI
n

MAXRRRRRSI  (3) 

where parameters nS and DCS depend on the secondary structure type S. 
Directional parameters (1) are estimated in [2] on the basis of 25, and later in [3] 

on 68 protein sequences, consisting of about 12000 amino acids. Tables, containing the 
values of these parameters are given in [3], and their dependence on the distance i-j for 
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some particular pairs of amino acids and secondary structure types is qualitatively dis-
cussed. 

Results 
Here we describe the relation of the protein primary and secondary structure using the 
statistical correlation. While directional parameter (1) is computed based on three out 
of four mutual probabilities for chosen amino acid and for fixed secondary structure, 
the statistical correlation depends on all four of them 

 
))(1)(())(1)((

)()()(
),(

iijj

ijij
ij RPRPSPSP
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RS

−−

−
=ρ . (4) 

Correlation values belong to the range from –1 to 1. Positive (negative) values 
mean that the presence of the amino acid in the position i "promotes" ("suppresses") 
the appearance of the given secondary structure type at position j. 

Correlation parameters are computed based on protein secondary structure data, 
obtained by applying the program DSSP [4] to protein structure data from PDB [5]. In 
fact, the representative protein subset PDBSELECT [6] with the threshold of 25% is 
used, containing 1737 sequences with 282329 amino acids. The eight different secon-
dary structure types are considered, as opposed to [3], where only four secondary 
structure types are dealt with. 
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Figure 1. Correlation parameters for α-helix and distances less than 15. 
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Figure 2. Correlation parameters for the Arginine. 

 

The correlations are analyzed in the distance range from 0 to 25 (in both direc-
tions), giving 8160 (20×8×51) correlation parameters. The α-helix parameter values 
for distances less than 15 are shown in Fig. 1. The parameter values for Arginin are 
shown in Fig. 2, in the same distance range. Remarkable asymmetry of the Arginin 
correlation with the α-helix appearance can be observed: the correlation values are 
higher towards N-, than towards the C-terminal. 

Similar diagrams are obtained for other secondary structures and for all amino 
acids. The general shape of these diagrams is similar to those for directional parame-
ters, computed according to (1) as in [1]. The “noise” outside the central region of 
these diagrams is less, if correlation parameters are used. It is believed that correlation 
parameters could be used to improve the secondary structure prediction in GOR algo-
rithms. 
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Abstract 
An 1-dimensional 3-component reaction-diffusion system with one activator and two 
inhibitors is considered. An analytical treatment is possible since the nonlinear activator 
reaction term is approximated by a piecewise linear function. As a particular case we 
choose a semisymmetric inhibition and obtain general traveling wave solutions. 

 
Introduction 
Reaction-diffusion equations play an important role in nonlinear dynamics. Due to 
the nonlinearity of the reaction terms, the theoretical treatment of the problems is 
complicated. In the approach to be presented in this paper, the nonlinearity is 
approximated by a piecewise linear function. Piecewise linear approximations of the 
nonlinear term have been employed in a number of situations [1,2] and have the 
advantage of enabling the reduction of existence problems for traveling waves to root 
finding for certain nonlinear algebraic equations. 
 
Results and Discussion 
An 1D three-component activator-inhibitor model with one activator and two 
inhibitors [3] describing excitable media in terms of reaction-diffusion equations 
consists of three scalar fields u(x,t), v(x,t) and w(x,t) and is described by the system 
 

( ) 2

2

, ( , )( ) ,
u x t u x tf u v w

t x
∂ ∂

= − − +
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( ) 2

2

, ( , ) ,
v x t v x tu v

t x
∂ ∂

= ε −β +
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( ) 2

2

, ( , ) , , , , cons
w x t w x tu w

t x
∂ ∂′ ′ ′ ′= ε −β + ε β ε β =

∂ ∂
t , 

 

where the rate function f(u) is the activator reaction term which characterizes the 
nonlinearity of the system. For many reaction-diffusion models (activator-inhibitor 
systems) the f(u) term has inverted N-shaped (cubic)  or V-shaped (quadratic) profiles 
on the u – f(u) diagram. As a basis for the calculation we use here a piecewise linear 
approximation of the f(u) term, consisting of two shifted linear pieces: 
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( ) 1 at 0 andf u u u= −α − <   
 

( ) 1 at 0, const.f u u u= −α + > α =  
 

The focus of our considerations is a traveling wave solution. Therefore, we introduce 
the traveling frame coordinate ξ = x – ct, where c is the wave velocity, and rewrite the 
model equations in the form of traveling wave equations 
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Thanks to the piecewise linear character of the model, the solutions for each piece are 
expressed as superpositions of six exponentials (the solutions contain cosine and sine 
terms when λn acquire imaginary parts) 
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Here ,n nA B and nB′ are constants and λn are the eigenvalues. We consider here a 
particular case of semisymmetric inhibition where ′β = β . In this case the eigenvalues 
read 
 

2
1,2 0/ 2 / 4 ,c cλ = − ± + γ  

 

2
3,4 1/ 2 / 4 ,c cλ = − ± + γ  

 

2
5,6 2/ 2 / 4 ,c cλ = − ± + γ  

 

where 
 

2
0 1,2, ( ) / 2 ( ) / 4 ( ).′γ = β γ = α +β ± α +β −αβ − ε + ε  
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The constants nA  and nB′  can be expressed as 
 

1 2
1,2 3,4 3,4 5,6 5,60, , ,A A B A Bβ − γ β − γ

= = =
ε ε

 
 

1,2 1,2 3 6 3 6, .B B B B− −
′ε′ ′= − =
ε

 
 

These solutions must satisfy appropriate boundary conditions for fronts (heteroclinic) 
or pulses (homoclinic). Front and pulse solutions consist of two and three pieces, 
respectively. After the matching procedure [4], we obtain wave solutions and the 
corresponding velocity equation. The details will be published elsewhere. 
 
Conclusion 
The analytic solutions of the problem of wave propagation in reaction-diffusion 
systems that we present are much simpler than the standard solutions through 
numerical calculus. We have considered the model with inverted N type of nullcline 
which correspond to cubic nonlinearity. However, the piecewise linear approximation 
can be made for systems with more complicated nonlinear reaction terms leading to a 
generalization to multistable cases, which may be considered in the context of the 
above described approach. 

Here we have considered an idealized free model. Real systems contain pertur-
bations. Wave propagation in the considered systems can be effectively controlled by 
application of an external forcing. This forcing can be prescribed a priori, i.e., as a 
modulation of excitability. If we consider a forcing that is moving with the wave, then 
the translation invariance of the model equations is violated and the wave solution 
depends on the phase value, i.e., we have a family of wave solutions with different 
phases [5]. 
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Abstract  
The paper presented is focused into studies of responses of one- and two-dimensional 
excitable media to a pulse-like stimulus applied in the refractory tail of a travelling 
wave of excitation. As a model of an excitable medium the three variable reaction-
diffusion model representing the population of starving cells of a slime mould Dic-
tyostelium discoideum (DD) is utilized. 
 
Introduction 
A propagation of excitation along one- or two-dimensional media is essential for liv-
ing organisms where it provides for various functions, such as travelling of action 
potentials along neuron fibres, propagation of contractions in heart muscle, communi-
cation between cells in cellular populations, etc. In many cases, the most salient fea-
ture of excitable media, i.e. one-to-one response to the pulse-like stimulus, is vital for 
normal functioning of the system. One the other hand, the situations, where the travel-
ling excitation emerge without stimulus, can be pathological and life threatening, as 
e.g. the fibrillations of heart muscle. Therefore, the investigations of conditions under 
which the spontaneous excitation can arise in excitable media are of a great interest 
[1,2].  
 
Mathematical Model 
The modelled system is formed by a layer of starving cells of DD through which the 
population waves of increased concentration of cAMP (cyclic 3´,5´- adenosine mono-
phosphate) propagate. The waves mediate the communication between cells, their 
aggregation in mounds and further morphogenesis of DD [3]. 

The mathematical model is based on the cellular mechanism of biochemical 
production, excretion and decomposition of cAMP proposed by Martiel and Goldbeter 
[4] and on the idea of diffusion of extracellular cAMP in the extracellular space [5]:  

 
βαγρσβ )(),,( T ti kkqt −−Φ=∂∂   (1) 

γγβγ γ
2)/( ∇+−=∂∂ Dkhkt et   (2) 

)1)(()( T2T1 ργργρ −+−=∂∂ fftT   (3) 
 

where β (γ) correspond to concentrations of intracellular (extracellular) cAMP and ρT 
denotes the fraction of cell receptors in the active state to the total number of cell re-
ceptors. Functions and quantities used in Eqs. (1-3) are defined in [4,6].  
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Results 
Fig. 1 illustrates a rich variety of dynamic modes of the reaction kinetics obtained by 
solving Eqs. (1-3) for ∂β/∂z = ∂γ/∂z = ∂ρT/∂z = 0 and ∇2 γ = 0 with the continuation 
software package CONT [8]. Parameters σ and ke were chosen as the main continua-
tion parameters since they affect the excitability and refractoriness of the system. 
Other parameters were kept constant [6,7]. For our simulations the characteristic point 
[ke = 6.0 min-1, σ = 0.375] lying within the region of excitable dynamics close to the 
region of coexistence of excitable and oscillatory behaviour (B2) was chosen. 
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Figure 1. Bifurcation diagram of the kinetic model described by Eqs. (1–3) in 
the parametric plane σ − ke. SI (SII) – region of one stable steady state with low 

(high) values of γ and β and high (low) value of ρT. B1, B2 – bistable regions; LP1, 
LP2 – limit points on SI and SII stationary solution branches, resp.; HB – Hopf 

bifurcation on the SII branch; × − characteristic point for numerical simulations. 
 

1D Simulations 
In 1D simulations, the travelling wave W0 was formed in the system resting in its 
steady state (γSS) by increasing the value of γ to the value γ = (1+100)γSS within the 
spatial interval of the length 1 mm on the left end of the system (see Fig. 2a). When 
the wave W0 has passed the centre of the system the pulse-like stimulus was applied in 
the centre of the system. At suitable values of stimulus parameters (amplitude γP, spa-
tial length xP, and period TP behind the wave W0) a pacemaker emitting spontaneously 
several travelling waves can emerge. The waves can be emitted either symmetrically 
or non-symmetrically. A non-symmetrical pacemaker emits N waves towards the right 
and N+1 waves towards the left sides of the system. An example of the non-
symmetrical pacemaker characterized by excitation number NI = 4+5 is shown in Fig. 
2a).  A symmetrical pacemaker emits the same number of waves towards both sides of 
the system.  
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Fig. 2. Spontaneous excitation of travelling waves in the spatially 1D system. 
a) Time-space plot tracing the maximum of γ , γP = 100 γSS , xP = 0,5 mm, TP=34 

min. b) Response dependence on stimulus parameters xP and TP. ♦ NI = 0+0;  
▲ Non-symmetrical  and × Symmetrical emission; × NI = 1+1 
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If a stimulus is applied after either short or long period TP the system behaves 
as a “classical” one responding by emergence of either none or one wave pair to a 
stimulus, respectively. At intermediate values of TP, pacemakers emitting several 
waves emerge. Non-symmetrical pacemakers arise within a coherent region of stimu-
lus parameters embedded within the region of parameters giving rise to symmetrical 
pacemakers.  

Non-symmetrically emitting pacemakers arise only at large amplitudes of 
stimulus. When γP = 50γSS, only symmetrical pacemakers were observed at the inter-
mediate periods TP. Small stimuli (γP = 10γSS) were able to evoke only “classical” re-
sponse, i.e. no spontaneous excitations were observed [7]. 
 
2D Simulations  

In 2D system, the wave W0 had a form of a half circle as shown in Fig. 3a. 
The stimulus was applied in a square-shaped area of the side xP by increasing the 
value of γ for an increment γP. The response of the system to the stimulus of various xP 
, γP and xhit (i.e. the distance between the wave W0 and the nearer edge of the perturbed 
area) was studied. 
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Fig. 3: Spontaneous excitation of travelling waves in the spatially 2D system,  

γP = 100γSS , xP = 2 mm. a) initial profile of γ, b) evolution of 5 circular waves,  
xhit = 1.15 mm, c) evolution of permanent spiral source of waves, xhit = 0.5 mm. 

b) a) c) 
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For xhit larger than 2.0 mm, only one circular wave is formed, i.e. the system 
responses as a “classical” one. When xhit is decreased, the temporal pacemakers emit-
ting several waves emerge. The number of emitted waves increases as xhit further de-
creases and when xhit drops below 1.1 mm the pair of spirals is created emitting new 
waves permanently [7]. 

 
Conclusions 
For the chosen set of model parameters only the temporal pacemakers emerge in the 
1D system. The type of emission and a number of initiated waves changes in the de-
pendence on stimulus parameters. In the 2D system both temporal and permanent 
pacemakers can be observed depending on the stimulus parameters. 
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Abstract 
We studied the effect of an electric field on the evolution of Liesegang pattern forma-
tion. Our aim was to describe quantitatively the changes of the scaling regularities 
compared with the electric field−free case. We applied a modified deterministic (Ost-
wald’s supersaturation) model to this case and a stochastic model, which also reflects 
the weak reproducibility of the phenomenon. 
 
Introduction 
Formation of precipitation patterns has been observed in a wide range of coupling 
chemical reactions with diffusion. A typical example is the Liesegang phenomenon 
studied by R. E. Liesegang for the first time in 1896 [1,2]. In a usual experimental 
setup an electrolyte (called outer electrolyte) diffuses into a reaction medium, which 
contains another electrolyte (called inner electrolyte), the precipitation reaction be-
tween them produces a quasiperiodic precipitate distribution. 
Liesegang patterns exhibit some regularities, which make connection between the 
macroscopic quantities of the system: Xn is the distance of the nth band measured from 
the junction point of the two electrolytes, tn is the formation time of the nth band and 
wn is the width of the nth band. 
The spacing law [3] can be formalized as 

P
X

X

n

n

n
=+

∞→

1lim , (1) 

where P is the so-called spacing coefficient, which depends on the initial concentra-
tion of the outer and the inner electrolytes (Matalon-Packter law [4-5]). 
According to the time law [6] 

0
2/1

0 ctaX nn += ,  

where  and  are constants. 0a 0c
The less precise scaling law is the width law [7-9] due to the inaccurate definition of 
the band thickness in experiments:  

α
nn Xw ∝ ,  

where a has been found equal to one. 
 

The aim of this paper is to investigate how a constant electric field modifies the regu-
larities above. Since precipitates in Liesegang experiments are formed by ions, an 
electric field is expected to have a significant effect on the evolution of patterns. 
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Results and Discussion 
We studied the effect of an electric field using two models: a deterministic [10] and a 
stochastic [11,12] one. The models incorporate a simple chemical reaction between 
two electrolytes 

A+(aq) + B−(aq) → P(s),  
 

where A+(aq) and B−(aq) are the ionic species and P(s) is the precipitate. In both mod-
els we applied a most popular description of precipitate formation (ion-product super-
saturation theory based on Ostwald’s idea [13]) driven by two thresholds: K is the nu-
cleation product and L is the solubility product. Precipitation occurs only if the prod-
uct of the local concentrations of the electrolytes reaches K. The previously formed 
precipitate promotes the precipitation process, and the former mentioned product has 
to reach only a lower threshold L [14,15]. 
 
Deterministic (mean-field) model 
In 1D the evolution of the system is described by the following partial differential 
equations 

( )

( )

( )

2

2

2

2

, , ,

, , ,

, , ,

a a

b b

a a aD z ab K
t x x
b b b

L

D z ab K
t x x
p ab K L
t

ε δ

ε δ

δ

∂ ∂ ∂
= − −

∂ ∂ ∂

∂ ∂ ∂
= − −

∂ ∂ ∂
∂

=
∂

L  (2) 

 

where a = a(x, t) and b = b(x, t) are the concentrations, Da and Db are the diffusion co-
efficients, za and zb are the charges of ions A+(aq) and B−(aq), respectively. ε corre-
sponds to the electric field strength. p is the amount of the precipitate and  
describes the precipitation reaction. Equations (2) were solved numerically using 
“method of lines”, which based on spatial discretization (finite difference method on a 
rectangular grid) and time integration (second order Runge-Kutta method).  

( ), ,ab K Lδ

 
Stochastic (discrete) model 
In this discrete model we proceed with each of particles in a discretized phase space. 
We give the number of particles in each “space segment” in every time step. We de-
scribed the evolution of the system with transition probabilities: we allow a “jump” at 
most of two segments, and assumed that the precipitate does not diffuse. 
The precipitation reaction is supposed to be deterministic. However, the motion is 
driven by a random walk, which makes the whole system stochastic. We explain the 
weak reproducibility in the real experiments in this way.  
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Figure 1. Dependence of the width of the bands on their distance measured from the junction 
point of the two electrolytes in the presence of an electric field (stochastic model). We fitted a 
linear curve for two steps model in a logarithmic scale. 
 
In the model all segments where band formation occurs “catch” some moving parti-
cles. The effect of an electric field (we denote its strength with  if it promotes the 
ion-transport) can be modeled by taking non-symmetric random walk. Started from 
normally distributed deviations, we used the transition probabilities: 

+ε

 

,383.0and2417.0,0668.0 01122 ===== −− ppppp  
 

where .2,1,0,1,2for)( −−=== iistepPpi  
The effect of the electric field was incorporated by a modification of the transition 
probabilities  as follows: +ε

ip

( ) ( ).1and2,1,0,1for1 221 +−
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i

ε
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i  

 

We modified the transition probabilities similarly, if the electric field retards the diffu-
sion of ions.  
 

Discussion 
Spacing law: The simulation results showed that in the presence of an external electric 
field the Xn+1 is still linear proportional to Xn. At the same time, the spacing coefficient 
P in eq. (1) decreases with increasing field strength [10,11].  
Time law: In both cases were found that in presence of an electric field the position of 
bands, measured from the junction point of electrolytes can be characterized by the 
function Xn = a(ε)t1/2 + b(ε)t + c(ε), where a(ε), b(ε) and c(ε) depend on electric field 
strength. Taking the limit  or , results in 0→+ε 0→−ε ( ) oa aε → , and ( ) 0b ε →

( ) oc ε → c  [10,11,16,17].  
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Width law: We have proposed an extended form of the width law (Figure 1), which 
takes into account the effect of a constant electric field. The general form of this scal-
ing law is wn ∝ Xn

α(ε), where α(ε) is a decreasing function of its argument [11].  
We have carried out real experiments to validate our numerical results in Ag-
NO3/K2Cr2O7/gelatine system [10,11]. The formation of precipitation bands was moni-
tored by a CCD camera, connected to a computer-controlled imaging system. 
Our findings are in a good agreement with the results of the numerical simulations 
described above. All these results show that the stochastic and the deterministic ap-
proaches presented here are effective methods to simulate the formation and dynamics 
of the regular Liesegang patterns even in an external electric field. Our approach based 
on the supersaturation model is not eligible for the description of the precipitation pat-
tern formation in many situations: e.g. in case of various boundary and initial condi-
tions [2]. 
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Abstract 
We systematically investigated the dynamics of oscillatory Bray-Liebhafsky reaction 
under microwave (MW) heating. Here we show that the microwaves can wipe out the 
oscillatory dynamics by favouring only one reaction pathway. At temperature of 68 °C 
minimal MW power able to affect reaction dynamics is determined to be about 10W.  
 

Introduction 
Microwave (MW) heating is widely used in chemistry for enhancing reaction yields as 
well as reaction rates.[1-3]  Instead of  this common approach in which reaction mix-
ture is analyzed before and after MW irradiation, we designed experimental procedure 
for continuous monitoring reaction dynamic.[4] It deserves special attention due to the 
possibility of dangerous MW leaking outside microwave cavity as well as masking of 
the measuring signal. As a model system for the investigations, Bray-Liebhafsky (BL) 
oscillatory reaction is chosen.[5;6] This reaction evolves through two alternatively 
dominating reaction pathways: 

 

2IO3
– + 5 H2O2 + 2H+ → I2 + 5O2 + 6 H2O   (1) 

I2 + 5 H2O2 → 2IO3 + 2H+ + 4 H2O (2) 

The driving force for the whole process is decomposition of hydrogen peroxide repre-
sented with the summary process: 
 

10 H2O2  → 10 H2O + 5 O2.  (3) 

This specific reaction is taken for the investigations for two reasons. Oscillatory proc-
esses are the very characteristic of living systems [7] and  MW effects on the BL oscil-
latory dynamics would serve as a model system for investigating more complex bio-
chemical systems. On the other side, effects of microwaves on the reaction dynamics 
may be quite important due to the increasing use of microwave devices and conse-
quently increased levels of environmental MW radiation. 
 Microwave heating is rather specific. Although quanta of MW radiation are of 
too small energy to disturb vibration quantum levels (responsible for chemical 
changes) of reacting molecules, heating of water solutions is effected through two 
main mechanisms, dipolar polarization and conduction.[1;2]  

Dipolar water molecules tend to align with the electric field of the electro-
magnetic radiation. This movement is not free due to hydrogen bonds among water 
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molecules. During this process many hydrogen bonds are broken (taking energy from 
the radiation), as well as newly recreated, evolving heat of formation.[8] It causes effi-
cient transformation of microwave energy to heat, throughout the whole reaction mix-
ture. In an ionic solution, besides the dipolar polarization, conduction effects are an-
other heat producing mechanism. Hydrated ions are forced to oscillate through the so-
lution. Ions are imbedded in the hydrogen bonded water network, which causes a kind 
of resistance to the electric current and consequently ohmic heating.  

 Due to the new conditions under which BL reaction can be conducted, sys-
tematic investigations of the reaction under different MW irradiation intensities is of 
high importance. For one chosen temperature, minimal MW power affecting reaction 
dynamics is determined. 
 

Results 
In order to investigate effects of microwaves, conventional heating (cooling) of the 
reaction mixture (with the thermostat) and microwave heating (CEM mircrowave syn-
thesis reactor at 2.45 GHz radiation) is properly balanced to keep constant tempera-
ture. The volume of the mixture was 6.05ml in all experiments. MW power is system-
atically increased in every experiment and reaction is followed electrochemically by 
recording potential of the platinum electrode versus double-junction Ag/AgCl refer-
ence electrode (Metrohm 6.0726.100) with a saturated K2SO4 electrolyte bridge. DC 
signal is additionally filtered from possible masking with 2.45 GHz AC noise. 

A set of experiments with 2W, 5W, 10 W and 20W of MW irradiation is per-
formed. To represent the MW effects, only results with no microwaves and with 10W 
microwave heating (at the reaction mixture temperature of 68 °C) are shown in the 
Figure. As can be seen, MW heating can prevent oxidation branch (2), with the effect 
of destroying oscillatory reaction dynamics. Since the temperature of the reaction mix-
ture was the same, results open possibility of nonthermal MW effects.  

 

Discussion  
In discussing results it is essential that the temperature is same in the MW experiments 
and conventionally conducted experiments. To exclude possible interference of the 
temperature sensor with the microwaves (and incorrect temperature reading), tempera-
ture is measured with fibber-optic sensor. Interference of microwaves with the plati-
num electrode reading are minimized with good electrical shielding. In our previous 
work [4] attempt is made to show that electrochemical processes at the electrode sur-
face are too slow to be influenced by the 2.45 GHz radiation.  
Because of constant temperature, MW effects could be explained with the changed 
flow of energy through the system . During MW heating, temperature gradient is sys-
tematically increased. It introduces flow of energy as an important reaction parameter 
which could couple with chemical reactions as well as interphase transport [9] and 
have important feedback on the reaction dynamics. Since water is the main carrier of 
energy flow, structuallity of hydrogen bonds network may be of highest importance in 
microscopic explanation of the effect, in good agreement with previous results in ab-
sence of microwaves.[4;10] 
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Figure 1. The BL reaction dynamic at 68 °C represented with platinum electrode poten-
tial versus time. Reaction mixture is heated with different participation of microwaves, 
starting with no microwaves, and with 10W of microwave power. Initial composition of 
the reaction mixture in all experiments was the same: [KIO3]0=8.1x10-2 mol/dm3, 
[H2SO4]0=5.0x10-2 mol/dm3, [H2O2]0=1.6x10-2 mol/dm3. The temperature of the reac-
tion mixture in both cases was kept constant to within 68±1 °C. Reaction mixture vol-
ume is V=6.05 ml. 

 
Conclusion 

Experiments established new way of controlling BL reaction mechanism (an 
possibly other complex processes) without direct chemical perturbation. Minimum 
MW power effecting control is determined to be 10W in the volume of 6.05ml, fortu-
nately not (jet) achieved in environmental MW pollution. 
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THE FRACTAL DIMENSIONS OF ACTIVATED ALUMINA 
SAMPLES OBTAINED IN THE REACTOR FOR PNEUMATIC 

TRANSPORT 

Lj. S. Rožić, S. Petrović, Ž. Čupić, T. B. Novaković, D. M. Jovanović 
IChTM-Department of Catalysis and Chemical Engineering, Belgrade, Serbia and Montenegro 

 
Introduction 
Thermal activation of gibbsite was investigated at four different temperatures between 
883 K and 943 K in a reactor for pneumatic transport in the dilute two phase flow re-
gime. According to the developed model of two phase flow of gas-small particles (d < 
10 µm) in the conditions of pneumatic transport, concentration of particles in reactor 
in all cases is significantly smaller than 5 vol. % [1,2]. This prevents the agglomera-
tion of particles during the dehydration process, which is one of the important factors 
influencing the product particle size.   

The short residence time of the gibbsite particles in a reactor for pneumatic trans-
port prevents crystallization into new phases, as established from XRPD analysis data.  

As a consequence of the partial dehydration of the gibbsite, open micro- and 
mesopores inside the grains of the original gibbsite crystals were formed. Products 
having a water content smaller than the stoichiometric water content for alumina 
monohydrate are characterized by a specific surface area greater than 200 m2/g.  

Appropriate modeling of the geometry effects can contribut to the improvement 
of the performances of activated alumina through rational shape design. Recently, the 
fractal dimension, df proved to be a useful tool describing the roughness and irregulari-
ties of materials on different scales. An approximate version of a generalized BET-
formula was developed to yields an easy method for calculating the fractal dimension 
from adsorption data. The fractal dimensions of activated alumina samples is deter-
mined in present paper according to M. Mahne and H. J. M’gel method [3] from a N2 
adsorption isotherm. 

 
Experimental 
As the starting material, gibbsite, γ-Al2O3×3H2O, with a granulation 100% particles 
with d < 10 µm was used. The characteristics of the gibbsite were as follows: water 
content of 2.79 mol H2O/mol Al2O3, bulk density of 2.33 g/cm3 and SBET 10.01 m2/g. 
The pore volume, within the range of pore widths from 2 to 50 nm, was 0.014 cm3/g. 
The water content of the gibbsite and obtained products were determined by TG 
analysis. 

The specific surface area SBET and CBET [4], of the gibbsite and products, were 
calculated from the nitrogen adsorption isotherm determined at 77 K in a high vacuum 
line.  

The X-ray powder diffraction analysis (XRPD) was performed on a Philips PW 
1051 diffractometer, using CuKα radiation. 

 174



SELFORGANIZATION IN NONEQUILIBRIUM SYSTEMS  

Dehydration experiments were performed in the pilot-scale plant with pneumatic 
transport of gibbsite particles and its very short residence time, varying between 0.4 s 
and 0.8 s in the reaction zone at constant temperature. The pilot-scale plant consist of a 
blower for air supply, electric air preheaters, pneumatic transport reactor with the 
transport tube diameter 80 mm, mixing chamber for warm and cold air, cyclone and 
bag filter for product collection. The gibbsite was introduced into reaction section us-
ing vibrating feeding device and pneumatic transport line with airflow rate of 1 m3/h. 
Before starting an experiment, the airflow was preheated up to the selected reaction 
temperature adjusted by temperature inlet controller. Along the reactor, four thermo-
couples were situated in the center of the reactor, which allows to achieve the desired 
temperature profile within the zone of aluminum oxide trihydrate decomposition. The 
cold airflow was used for cooling the outlet mixture of the air and activated gibbsite.  

 
Results and Discussion 

Water Content 
The gibbsite used as the starting material contained 34.6 wt. % of water, which corre-
sponds to the theoretical value for Al2O3 ⋅3H2O. Water content in the samples obtained 
by thermal treatment of gibbsite in the regime of pneumatic transport at temperatures 
from 883 K to 943 K are given in Table 1 

 
Table 1. Water content m (mol H2O/molAl2O3) in products obtained 
on thermal treatment of gibbsite. 

t(s) m883 K m903 K m923 K m943 K

0.00 2.79 2.79 2.79 2.79 
0.38 1.99 1.69 1.60 1.24 
0.58 1.60 1.51 1.00 1.00 
0.65 1.42 1.16 0.92 0.77 
0.73 1.24 1.08 0.92 0.77 
0.81 1.24 1.16 0.77 0.63 

 

The loss of water content follows the increasing of the residence time, t(s), at all 
temperatures. This relationship was used to determined optimum condition (residence 
time and temperature of activation) to obtain the products having desired properties.  

The obtained results show that the rate of dehydration of gibbsite obeys the first-
order reaction with respect to water content in the solid material [5]. The activation 
energy of dehydration of gibbsite of 66.5 kJ / mol and frequency factor 
of 8.85⋅103s-1, were calculated from Arrhenius plot. The analysis of results presented 
in Table 1, shows that the samples obtained after residence time of 0.73s at all meas-
ured temperatures, and has water content similar then the stoichiometric water content 
for alumina monohydrate, which prevent the crystallization of the material into new 
phases at this condition. These samples are denoted as MPA1, MPA2, MPA3, MPA4 
respectively with increase of dehydratation temperatures. 
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X-ray diffraction 
In Fig. 1, the X-ray diffractograms 
for gibbsite (MPA0) and activated 
alumina samples (MPA1, MPA2, 
MPA3, MPA4) are presented. In the 
X-ray diffractogram of starting sam-
ple, a pure crystal gibbsite phase was 
identified. A decrease in the reflec-
tion intensity of gibbsite with in-
creasing temperature, indicate that 
activated alumina is either microcrys-
talline or amorphous. 

 

 
Fractal dimension 
From the shape of the adsorption-
desorption isotherms for all samples, 
it was concluded that hysteresis loop 
corresponds to the H3 type. Such a 
hysteresis loop can appear in slit-
shaped pores. The monolayer vol-
ume, Vm and CBET were calculated by 
the BET method from nitrogen ad-
sorption isotherms using data up to 
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The M. Mahne and H. J. 

M’gel metod [3] is based on the ap-
proximation of the fractal version of 
the BET-formula (the Fripiat-
Gatineau-Van Damme isotherm): 

Figure 2. Estimation of df  according to  
approximate version of the isotherm [3].  

(The ordinate scales are moved up by 0.5 for 
successive results from MPA4 to MPA0). 
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Figure 1. XRDP of the gibbsite  
and activated alumina samples. 
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where, V is adsorbed volume, P is measured pressure, α = 3-df, c1 and c are adhesion 
and cohesion parameters, v0 is volume of monomolecular layer covering a unit area 
and a0 is area which is not occupied by adsorbate molecules. The approximation of the 
above isotherm in the logarithmic version is: 
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According to above equation, approximative version of the BET isotherm is pre-
sented in Fig.2 for all samples. 

The starting gibbsite had a fractal dimension of the surfaces df = 2.08, indicating 
that in the adsorption of molecules its surface behaves like an almost flat surface. Ac-
tiva-ted alumina samples are characterized by a greater fractal dimension of their sur-
faces, df values increase with a rise in the temperature of the thermal treatment, indi-
cating that the irregula-rities of their surfaces are greater. 

 
Conclusion 
It was shown that the activated alumina samples are characterized by the fractal di-
mension of their surfaces whose value increases from 2.08 to 2.46 with increasing de-
hydration temperatures. Consequently, in the adsorption of molecules greater than ni-
trogen, part of activated alumina surfaces is excluded from the adsorption process. 
Applied method has proved to be of great practical value for the estimation of the frac-
tal dimension. 
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Abstract 
The influence of temperature and various initial concentration Ce2(SO4)3 on 
characteristic period of evolution in BZ oscillatory reacion was investigated. For 
equiconcentrations BZ systems and systems with different initial concentration of 
Ce2(SO4)3 activation energy was calculated as a function of reciprocial kinetic 
parametars τ1 τ2,3 τend  values and temperature. Calculated values for parameters 
acitvation energies indicate that inside investigated temperature and concentration 
interval, evolution of oscillatiory reaction is realised with different mechanism. Also, 
we have indication that different steady-states in which system are, have different 
activation energies. 
 
Introduction 
The classical Belousov-Zhabotinsky reaction (BZ) [1] is understood as the oscillatory 
oxidation of one-elektron redox couple (mostly used are Ce3+/ Ce4+, Mn2+/ Mn 3+, fer-
roin / feriin, Ru(bipy)3

2+/ Ru(bipy)3
3+) by bromate ions in acid media and in the pres-

ence of an organic substrate that can be brominated and oxidized [2-3]. In this paper 
the examination of the temperature variations on Belousov-Zhabotinsky oscillatory 
reaction is analyzed on the reaction mixture containing malonic acid, potassium bro-
mate, potassium bromide, sulphuric acid and Ce+3 as catalyst [4].The kinetics of 
different patways are analyzed by means of the characteristic periods: of the 
preoscillatory period τ1 (the time interval from the beginning of the reaction to the 
onset of the first oscillation), τ2.3  (the period between second a third oscillation), and 
the period τend (the time elapsed between the start of the reaction and the termination 
of the oscillatory phase). 
 In the literature, there are several methods for determination of activation 
energies. In [5,6] an activation energy of BZ reaction Eω has been obtained from the 
relation beetveen the logaritam of reciprocal values of the frequency of the regular 
oscillations and the reciprocal temperature. Also, in [7] the activation energy of BZ 
reaction was determinated by the preoscillatory period. The method for the 
determination of activation energies that will be used here, based on temparature 
depandence of τ1, τ2,3 and τend, has been proposed earlier, but appleid on the Bray-
Liebhafsky oscillatory reaction [8]. 
 
Experimental 
The BZ reaction was realised in the stationary well-stirred reactor with a reaction vol-
ume of 51 ml. A glass cell Methrom Ea 876-20 was used as a reactor. Time evolution 
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of BZ reaction was followed potentiometrically by using bromide ion-selective elec-
trode. The electrode was connected by Ag/AgCl reference electrode by the sulphate 
bridge. 

The measurments where carried out in independent series of experiments per-
formed at different temperatures in intervals from 303 to 332K. The uncertainty in 
measuring the temperature was ± 0.2 K. All experiments were carried out under the 
constant values of the initial concentrations of the following species (in mol/dm3): 
[CH2(COOH)2]0 = 3.20x10-2, [H2SO4]0 =1.0, [KBrO3]0 =6.17x10-2, [KBr]=1.50x10-5. 
The initial concentration Ce2(SO4)3  was varied from 3.75 x10-3 to 5.0 x10-3 mol/dm3. 

 
Results and Discussion 
Well-developed potential-time curves are obtained. The oscillograms with one 
preoscillatory and oscillatory period are obtained. The form of oscillogram depends on 
the temperature and the initial concentrations Ce2(SO4)3. Characteristics examples of 
BZ oscillograms obtained et diferents temperatures illustrated in Figure 1. 
 
 

 
 
 
 
 
 

 
 
 
 
Figure 1. The potenciometric traces of 
the BZ reaction obtained by the Br- ion 
sensitive elektrode , in order of in-
creasing temperatures (in K): 
a) 303.2, b) 308.2, 
c) 313.2,  
d) 318.2, e) 323.2,  
f) 332.2.  
[Ce2(SO4)3]o = 5.00x10-3 mol dm-3.
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The activation energies (in kJ/mol) calculated by means of the characteristic 
periods τ1-E(τ1), τ2,3-E(τ2.3) and period τend-E(τend) are obtained from the oscillograms 
measured at different temperatures. The dependence between the logarithm of the re-
ciprocal kinetic properties and 1/T is in accordance with Arrhenius low (Fig.2). 

 
 
 
Figure 2. The logaritam of reciprocal 
values of the caracteristic periods (2-1: 
ln(1/τ1), 2-2: ln (1/τ2.,3), 2-3: ln (1/τend)), 
all versus 1/T. 
a: [Ce2(SO4)3]o = 3.75 x10-3 mol dm-3 

b: [Ce2(SO4)3]o = 5.00 x10-3 mol dm-3 

 

By means of the mentioned parameters, characteristic periods τ1, τ2,3 and pe-
riod τend obtained from oscillograms at diferent temperatures (between 303 K and 332 
K), the activation energies calculated for two differents initial concentrations of 
Ce2(SO4)3 (Table 1). 

 
Table I  The activation energies calculated by means of the period τ1-E(τ1), 

τ2,3-E(τ2.3) and period τend-E(τend). 
[Ce2(SO4)3]0 
/ mol dm-3 / 

E(τ1) 
/ kJ/mol / 

E(τ2,3) 
/ kJ/mol / 

E(τend) 
/ kJ/mol / 

3.75x10-3 54 52 63 
5.00x10-3 51 53 65 

2.3 

2.2 2.1 
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Conclusion 
 The oscillograms depend on temperature and initial concentrations of 
Ce2(SO4)3. The kinetic analysis indicate that different reaction steps of the BZ reaction 
mechanism are determining the values of τ1, τ2,3 and τend and thus they are responsible 
for the properties of the different dynamic states. We all know that [6], at least two 
kinetic pathways with different rates for brome malonic acid formation would be pre-
sent in the BZ reaction. In our case τ1 and τ2,3 are determined by relatively rapid ki-
netic pathway, whereas τend is determined by the slower one. The slower kinetic path-
way determines the overall reaction rate.  
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Abstract 
The equiconcentration Belousov-Zhabotinsky oscillatory reaction at different initial 
sulfuric acid concentration from 0.1 to 1.4 mol/dm3, and  various temperatures from 
298 to 342 K was investigated. Two different kinetic oscillatory domains with respect 
to acidity, one for 0.2-0.4, and another for 0.6-1.4 mol/dm3, was found. When the 
initial concentration of H2SO4 is between 0.6 and 1.4 mol/dm3, the activation energies 
are also determined. They have the values from 57 to 68 kJ/mol depending on acidity. 
 
Introduction 
Belousov-Zhabotinsky (BZ) oscillatory reaction [1] is the metal ion catalyzed oxidation 
of an easily brominated organic substrate by bromate in an acid medium [1-3]. The BZ 
reaction is examined in a series of the reaction systems carried out from Belousov 
solution [4-6] (citric acid, potassium bromate, potasium bromide, cerium ion and 
sulfuric acid), by combination of different substrates (malonic acid or the other organic 
substrate) and the metal catalysts (Ce+4/Ce+3, Mn+3/Mn+2, Fe+3/Fe+2 etc.).  
 Here, the influence of acidity and temperature on generation of the 
oscillograms in the BZ reaction is analyzed on the reaction mixture containing malo-
nic acid, potassium bromate, potassium bromide, sulphuric acid and Ce+3 as catalyst. 
The overall stoichiometry can be approximated in general form: [5]. 
 
Experimental 
All experiments were carried out in the same manner as earlier [7], under the constant 
values of the initial concentrations of the following species (in mol/dm3): 
[CH2(COOH)2]0 = 3.20 × 10–2, [Ce2(SO4)3]0 = 2.50 × 10–3, [KBrO3]0 = 6.17 × 10–2, 
[KBr]0 = 1.50 × 10–5. The initial sulfuric acid concentration was varied from 0.1 to 
1.4 mol/dm3.  

For every given acidity the temperature was varied from 298 K to 342 K. The 
BZ reaction was realised in a well-stirred closed reactor with a reaction volume of 51 
ml. Time evolution of BZ reaction was followed potentiometrically, by using bromide 
ion-selective electrode connected by Ag/AgCl reference electrode by the sulphate 
bridge. 
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Figure 1. The potentiometric traces of 
the BZ reaction obtained by Br--ion sen-
sitive electrode at  303 K, and following 

[H2SO4]o (in mol/dm3): 
a) 0.1, b) 0.2,  c) 0.3,  d) 0.4,  e) 0.6, 

f) 0.8, g) 1.0 and h) 1.4 

Figure 2. The potentiometric traces of the 
BZ reaction obtained by Br--ion sensitive 
electrode at [H2SO4]0 = 0.1 mol/dm3 and 

temperatures (in K): 
a) 323,  b) 328,  c) 333,  d) 334,  e) 337,  

f) 342. 
 
 
Results and Discussion 
Well-developed potential-time curves are obtained. The dependence of the oscil-
lograms on the temperature and acidity is presented in Fig.1 and Fig.2, respectively. 

Analysing the oscillograms obtained by changing the initial sulfuric acid 
concentration from 0.1 to 1.4 mol/dm3 at constant temperatures, we have found that 
the sistem do not exibit an oscillatory evolution at the lowest concentration of sulfuric 
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acid (0.1 mol/dm3) at any considered temperature in the range from  298 to 342 K 
(Fig.1). 

Moreower, analysing the oscillograms obtained by changing the temperature 
from  298 to 342 K at constant initial sulphuric acid concentrations, we have found 
that the system do not exhibit an oscillatory evolution at relatively low (≤323Κ) and 
relatively high (≥342K) temperatures (Fig.2).  
 The transition from monotonous to oscillatory evolution, found at every con-
sidered constant temperature, depends on selected temperature, whereas the same tran-
sition found at any considered constant acidity, depends on chosen initial concentra-
tion of sulphuric acid. 

Two different kinetic oscillatory domains, one for 0.2-0.4, and another for 0.6-
1.4 mol/dm3, was found (Fig.3). The value for τend is also the complex function of 
acidity (Fig.3-1). However, in the region 0.6 ≤ [H2SO4]0 ≤ 1.4 mol/dm3, the curves for 
τend (Fig.3-2) decrease monotonously with temperature increasing for any value of the 
acidity. For these cases the calculated activation energies depend on the acidity 
(Fig.4). The activation energies was calculated by the method based on the relation  
ln(1/ τend) = f(1/T) [7,8].  
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Figure 3. Dependence between 1/ τend and 1/T for different acidity: from 

0.2 to 0.4 moldm –3 H2SO4 (3-1), and from 0.6 to 1.4  moldm –3 H2SO4 (3-2). 
 

 
Conclusion 
The evolution of the BZ oscillatory reaction in the acidity-temperature phase-space 
together with corresponding kinetics is analysed. The obtained results for the activa-
tion energies are in agreement with the expected ones. 
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Fig. 4. The depandence of activation energies Ea on the acidity. 
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Abstract 
The decomposition of the malonic acid in the Belousov-Zhabotinsky oscillatory reac-
tion as the pseudo-first order kinetics with respect to itself is analyzed. Particularly, 
investigated malonic acid decomposition in the presence of bromate, bromide, sul-
phuric acid and cerium(III)sulphate, a numerous experiments were performed where 
only the initial concentracion of malonic acid ([CH2(COOH)2]0) was varied from 
1.2×10-2 to 4.3×10-2 mol dm-3., and temperature from temperature 303 to 318 K. 

The obtained rate constants for the malonic acid decomposition have the val-
ues between 9.12×10-3 min-1 at 303 K and 3.54×10-2 min-1 at 318 K. The correspond-
ing activation energy has the value of 63 kJ/mol. 
 
Introduction 
In literature, [1] the reaction mixtures composed of organic substrate, bromat, sulfuric 
acid and a metalic catalyst are referred as Belousov-Zhabotinsky (BZ) ones. The most 
studied [2] and by far the best characterized is the malonic acid, bromate, sulfuric acid 
and cerium (III) reacting system, the system that we analyzed here, too. 

The species in the BZ system consisting of malonic acid, bromate, sulfuric 
acid and cerium (III), can be classify into three distinct groups [3]: a) the reactants   
(BrO3

- and CH2 (COOH)2 ), (b) the recyclic intermediates (e.g., Br-, BrO2, HBrO2, 
Ce(IV) ) and (c) the final products (e.g., CO2, CHBr(COOH)2.  

In the mentioned reaction system the concentration of recyclic intermediates 
exibit temporal concentration oscillations, whereas the concentrations of reactans and 
the final products exibit the corresponding stepwise evolution.[4] 

Since this system can be considered as malonic acid decomposition, as well 
that the reactions of decomposition are often first order in respect to reactant undergo-
ing decomposition, [5] we decided to analyze the kinetics of the overall reaction  

( ) ( ) OHCOCOOHBrCHHCOOHCHBrO Ce
222223 432232

3

++⎯⎯→⎯++
++−

 
as the pseudo-first order reactions with respect to malonic acid. 
 
Experimental  
The kinetics of the Belousov -Zhabotinsky oscillatory reaction was analized in a well 
stirred closed reactor (magnetic stirrer of  700 rpm) with a reaction volume of 51 ml. 
The evolution of the reaction was monitored potentiometrically, using a bromide ion-
sensitive electrode connected to an Ag/AgCl reference electrode by a sulfate bridge.  
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The measurments were carried out in independent series of exsperiments at 
different temperatures and different malonic acid concentrations. Namely, at every 
temperature, in the region between 303 and 318 K, independent experiments with dif-
ferent initial concentrations of malonic acid are performed. The initial malonic acid 
concentracion, [CH2(COOH)2]0, was varied from 1.2×10-2  to 4.3×10-2 mol dm-3. In all 
cases, experiments were carried out with constant values of the initial concentrations 
of the following species ( in mol dm-3): 1.0 H2SO4 ; 6.2×10-2 KBrO3; 1.5×10-5 KBr and 
2.5×10-3 Ce2(SO4)3.  
 
Results and Discussion 
Analysing the potentiometric measurements of the evolution of the Belousov-
Zhabotinsky system one can note that the oscillograms are the funtions of the tempera-
ture and initial concentracion of malonic acid. The number of oscillations are the func-
tion of the initial concentration of malonic acid only (Table I). 

 
Table I. The number of oscillations as a function of the initial concentration of 
malonic acid. 

T / K / 
 

 
[CH (COOH) ]2 2

/10
0 

-2mol dm-3

 
303 308 313 318 

1.2 2 2 3 2 
1.6 7 7 7 7 
2.2 14 14 14 15 
3.2 26 26 27 27 
4.3 39 40 40 40 

 
However, in all experiments, under the considered conditions, the type of os-

cillogram is permanent. Hence, we could suppose that the malonic acid concentracion 
at the end of reaction, is approximately constant, independent of the initial malonic 
acid concentration. With this assumption and the fact that decomposition reactions are 
often first order with respect to the reactant undergoing decomposition, the kinetic 
analysis could be done by considering the overall process as pseudo-first order with 
respect to malonic acid. In other words, if both assumptions are valid, the equation  

 
( ) [ ]22

22 )(
)(

COOHCHk
dt
COOHCHd

−=  

 
as well as the integrated form of this equation, 
 

 [ ] [ ]02222 )(log303.2)(log303.2 COOHCH
k

COOHCH
k endend +−=τ  

 
where [CH2(COOH)2]0 and [CH2(COOH)2]end denote the concentracions of malonic 
acid t = 0 and t = τend, must be satisfied.[4] 
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In Fig.1 we can see that obtained results obey the last equation very well for 
all initial malonic acid concentrations less than, or equal to 3.2 × 10-2 mol dm-3. Thus, 
it is shown that the malonic acid decomposition can be analyzed as a pseudo-first or-
der reaction with respect to malonic acid in the concentracion range of 1.2 × 10-2 to 3.2 
× 10-2 mol dm-3. The rate constant is calculated from the straight-lines presented in 
Fig.1. The calculated pseudo-first rate constant for the overall proces at different tem-
peratures are given in Table II. The rate constant at 318 K is taken  from Ref. [5].  
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Figure 1. The time τend 
as a function of log 
[CH2(COOH)2]0 for  
different temperatures. 
 

 
The activation energy of BZ oscillatory reaction is calculated by means of the 

rate constant given in Table II. The dependence between  ln k  and 1/T follows the 
Arrhenius law (Fig.2). The activation energy of the overall proces is found to be 63 
kJ/mol wich is in accordance with the activation energy obtained in literature [3,6]. 
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Figure 2. The Arrhenius 
dependence between ln k 
and 1/T. 
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Table II. Value of the pseudo-first rate constant k for concentracion range of 

hydrogen peroxide from 1.2 × 10-2 to 3.2 × 10-2 mol dm-3

T/K/ 303 308 313 318 

   K /min-1/ 9.12x10-3 1.58x10-2 1.93x10-2 3.54x10-2
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Conclusion 
The decomposition of malonic acid in the presence of bromate, sulfuric acid and 
Ce(III) Belousov-Zhabotinski oscillatory reaction, is analyzed in temperature range of 
(303 to 318 K) and variable concentrations of malonic acid The pseudo-first order ki-
netics with respect to malonic acid as the species undergoing decomposition with a 
coressponding rate constants at different temperatures was found. The activation en-
ergy of the overal reaction is 63 kJ/mol. It is in agreement with those calcultade from 
temperature depandance of τend  (ln(1/τend ) = f(1/T)) for several equicocnetration reac-
tion systems (Ea=65±3 kJ/mol). 
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Abstract 
The oscillatory regime of the Briggs-Rauscher reaction is perturbed by free-radical 
scavengers. An overview of experimental evidence and mechanistic interpretation is 
reported. 
 
Introduction 
The most dramatic oscillating reaction in solution is probably that discovered in 1973 
by Briggs and Rauscher [1] (the BR reaction). When appropriate amounts of hydrogen 
peroxide, acidic iodate, manganous salt, malonic acid (MA), and starch as indicator 
are mixed in aqueous solution, the system repeats several times the sequence: colorless 
→ yellow → blue. The main intermediates for which concentrations oscillate in the 
BR reaction are: I-, I2, HOI, HOIO, IO2

•, and the hydroperoxyl radical HOO•. IO2
• and 

HOO• radicals were not directly detected in BR mixtures: their presence in the system 
were proposed in early, nearly identical mechanisms by Noyes and Furrow [2] and by 
DeKepper and Epstein [3] in analogy with the experimental findings for the Belousov-
Zhabotinsky [4] and the Bray-Liebhafsky reactions [5]. 

A decisive indirect evidence of involvement and important role played by HOO• 
radicals in the onset of oscillations was given by Cervellati et al. [6,7] studying the 
perturbations on the oscillations by addition of free-radical scavengers belonging to 
the class of polyphenolic antioxidants. The perturbation consists of an immediate ces-
sation of oscillations, an inhibition time followed by a regeneration of oscillations. 
Since it is well known that polyphenols show strong oxygen free radical scavenging 
activity [8], inhibitory effects were ascribed to scavenging of HOO• radicals by these 
compounds. 

The aim of this work is to give an overview of the experimental and mechanistic 
investigation of these perturbations, also illustrating the results with a phenolic com-
pound not previously reported, epinephrine (adrenaline). 
 
Experimental Observations 
Oscillations in the BR mixture were followed potentiometrically by recording the po-
tential of a bright-platinum electrode or the potential of a iodide-ion selective elec-
trode, coupled with a reference electrode. As reference electrode we used a double-
junction Ag/AgCl/Cl −(KNO3) electrode. Electrodes were connected to a pH multime-
ter (accuracy ± 1 mV) controlled by an IBM-compatible PC. A suitable data-
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acquisition program was used. All solutions and reaction mixtures were maintained at 
25°C by means of a thermostating system (accuracy ± 0.1 °C). 

Solutions used in this study were well-stirred.  In the concentration region of the 
reference solution in Fig. 1, results were not sensitive to exact stirring speed, indicat-
ing that interfacial transport of diiodine and dioxygen are not major factors under the 
conditions here. During the inhibition period, both dioxygen evolution and diiodine 
production are at very low levels, so potential effects of interfacial transport are dimin-
ished. 

Typical recordings are shown in Fig. 1: on the left the oscillation behavior of a 
30 ml reference mixture to which 1.0 mL of doubly distilled H2O was added after the 
third oscillation is reported; on the right the behavior when 1.0 ml of suitably diluted 
aqueous solution of adrenaline was added (batch conditions). 
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Figure 1. Recording of the potential of the bright-platinum electrode vs. time. left) 

Reference mixture, initial conditions: [MA] = 0.05 M, [Mn2+] = 6.67×10-3 M,  
[IO3

-] = 6.67×10-2 M, [HClO4] = 2.66×10-2 M, [H2O2] = 1.20 M; right) Oscillator 
perturbed by the addition of 1.0 ml adrenaline solution, initial concentration in 

mixture = 8.98 µM. 
 

Similar behaviors were obtained on ten substituted diphenols [7]. The depend-
ence of the inhibition time (i.e. the time elapsed between the cessation and the regen-
eration of the oscillatory regime) on the concentration of the antioxidant added was 
found to be linear over a wide range (different for each antioxidant) of concentration 
[6,7]. The straight line tinhib vs concentration for adrenaline is shown in Fig. 2. 

Below a certain concentration of antioxidant added (different for each antioxi-
dant), the behavior deviates from linearity, and the inhibition times become too low to 
be detected. At high concentration of antioxidant, the amplitude of the resumed oscil-
lations becomes too low, until up to a given concentration (different for each antioxi-
dant) oscillations do not restart. This means that the reaction reaches its end, not being 
able to produce radicals anymore. 
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Mechanistic Interpretation 
Recently, Furrow et al. [9] reported a 13-step new mechanism (named FCA model) 
for the BR reaction that takes into account the important role played by HOO• radicals 
in its oscillatory behavior. 
To simulate the perturbations by a free-radical scavenger on the oscillations, the fol-
lowing steps were added to the FCA model, where Ar(OH)2 indicates a generic substi-
tuted diphenol, as adrenaline: 

IN Ar(OH)2 + HOO•  →  Ar(OH)O• + H2O2

  DEG Ar(OH)2  →  products 
The step IN represents the typical way of subtraction of a radical by an antioxidant: an 
H atom transfer from a phenolic OH group to the radical. The formed aroxyl radical 
Ar(OH)O• is quite stable and can react with another radical or with oxygen to give 
diamagnetic stable compounds. In the simulations Ar(OH)O• was considered an end 
product. The 1st order step DEG represents the possible parallel degradation of the in-
hibitor to unspecified products. The degradation may be due to oxidation (by acidic 
iodate) or iodination (by I2 or HOI) of Ar(OH)2. The kinetics of these reactions were 
recently studied in detail [10]: the results showed that for simulation purposes they can 
be summarized by step DEG. 
The kinetic constants of the FCA steps were kept fixed to those reported in [10], while 
kIN and kDEG were allowed to vary for the best fit to experimental behaviors. Experi-
mental and simulated behaviors of V(Pt) and [I−] respectively vs. time for a typical 
BR mixture perturbed by adrenaline are reported in Fig. 3. 
The very good agreement between the experimental and calculated inhibition time can 
be noted, although both IN and DEG represent overall processes for which individual 
steps and rate constants have not been determined. 

The same agreement was obtained with all the explored concentrations of 
adrenaline (Table 1), finding the following unique values for the rate constants: 
kIN = 7.2×107 M-1s-1, kDEG = 2.8×10-4 s-1. 
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Abstract 
A new analytical method for the determination of paracetamol using the perturbation 
caused by different amount of paracetamol on the Bray-Liebhafsky oscillatory reac-
tion system, being in nonequilibrium stationary state, is proposed and optimized. The 
method relies on the linear relationship between maximal potential shift obtained after 
adding paracetamol in matrix, and logarithm concentration of paracetamol. The cali-
bration curve obtained is linearly proportional to the logarithm concentration of 
paracetamol over the range 6.7 × 10-7 mol dm-3 − 6.9 × 10-5 mol dm-3. The proposed 
method was validated by determining paracetamol in various pharmaceuticals prepara-
tions with average RSD of 3.9 %. 
 
Introduction 
The oscillatory chemical system as a non-linear chemical system in the states far from 
equilibrium may be used as matrix for analytical determinations. The application of 
oscillation reactions to this effect originates from its complexity and its implicitly ex-
treme sensitivity to various perturbations [1-3]. The species examined under these 
conditions need not to be essential for the matrix reaction system, but sufficient for 
reaction with the matrix system. Here, the Bray-Liebhafsky oscillatory reaction [4], as 
the reaction where hydrogen peroxide decomposes into the water and oxygen in the 
presence of both IO-

3 and H+ ions, is used as the matrix for quantitative determination 
of paracetamol.  

Paracetamol, as one of the most important non-narcotic analgesics without the 
secondary effects of the salicylates on the gastric mucose, is frequently used analgestic 
drugs, although it may cause liver damage in same instances. At therapeutic dosage 
levels the drug is relatively no toxic. Because of its increasing therapeutic use, its as-
say and quality control are of vital importance.  
 Numerous methods have been reported for the analysis of paracetamol in 
pharmaceuticals, such as voltametric, spectrophotometric, electrochemical, fluorimet-
ric and chromatographic methods. Based on our previous experience [2,3,5] we have 
developed Pulse Perturbation of the Oscillatory reaction system in a stable non-
equilibrium stationary state or Stable Steady State (PPOSSS) procedure, for quantita-
tive determination of the paracetamol, and, in particular, demonstrated that the men-
tioned kinetic method could be successfully applied to quantitative determination of 
paracetamol in bulk drug and pharmaceuticals.  
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Experimental 
The Bray-Liebhafsky oscillatory reaction (BL), used as the matrix system, was con-
duced in Continuosly fed well Stirred Tank Reactor. Peristaltic pumps generated the 
inflows of reactants (KIO3, H2SO4 and H2O2) as well as outflow of reaction mixture.  
 The standard stock solution of paracetamol was prepared in 100 (v/v) metha-
nol. The stock solution was stored in refrigerator, protected from daylight and it ap-
peared to be stable during the period of study. Prior to injection, stock solutions were 
appropriately diluted with methanol before being used as working solutions. Four 
pharmaceuticals formulations containing paracetamol, excipient and other active in-
gredients were bought at Serbian chemist′s shops and analysed following the proposed 
procedure. Perturbations were performed by adding microvolumes, from 10 to 100 µL, 
of both paracetamol stock solution and samples by micropipettes. We applied manual 
injections of approximate duration of 0.5 s. Temporal evolution of the BL system 
monitored potentiometrically by Pt electrode versus a double junction Ag/AgCl elec-
trode as the reference. 

The chosen dynamics structures, when temperature is the control parameter, 
for perturbation analysis are non-equilibrium stationary states found under the follow-
ing experimental conditions: [KIO3]o = 5.9 × 10-2 mol dm-3, [H2SO4]o = 5.5 × 10-2 mol 
dm-3, [H2O2]o = 2.0 × 10-1 mol dm-3, specific flow rate, jo = 2,9 × 10-2 min-1 and three 
different temperatures, T = 35.5 °C, 37.0 °C and 42.9 °C. The best conditions for cali-
bration curve are obtained at T = 42.9 °C, that is in a stable non-equilibrium stationary 
state in the vicinity of a bifurcation point (TBP = 43.2 ° C). 
 
Results and Discussion 
The PPOSSS procedure, used for quantitative determination of paracetamol, is based 
on potentiometric monitoring of the response of the non-linear reaction system as ma-
trix system to the perturbations by different concentration of analyte. 
 The maximal change in potential (in mV), defined as the difference ∆Em = Ep 
− Es is proportional to the added paracetamol concentration. Where Ep is the maximal 
potential value attained after the perturbation is performed and Es is the potential cor-
responding to the stable stationary state before the perturbation is performed (Fig. 1.). 

Figure 1. Typical response curves obtained after perturbing the stationary state in 
the BL reaction by addition of different concentrations of paracetamol (on the left 

to the right): 6.7×10-7 moldm-3, 1.3×10-6 moldm-3 and 1.3×10-5 moldm-3 
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 The response of the potential shift versus the logarithm of the paracetamol 
concentrations was linear over the range 6.7 × 10-7 mol dm-3 ≤ [paracetamol] ≤ 6.9 × 
10-5 mol dm-3. The best linear fit of the experimental points was determined by the 
least square method. The regression equation of the standard series calibration curves 
is ∆Em = −80.6 − 10.7 log c (r = 0.996). The detection limit defined as the concentration 
of paracetamol which produces a signal-to-noise ratio of 3 is c = 5.8 × 10-8 mol dm-3.  
 In general, for practical purposes of the PPOSSS procedure, the actual mecha-
nism by which the analytes react with the matrix is not necessarily known. However, 
the composition of the samples that contain different species and possible interference 
with one another is necessarily known.  
 Four pharmaceuticals formulations that differed in their paracetamol contents, 
exscipients and other active ingredients, were analyzed using the PPOSSS method 
(Table 1). The average concentrations were calculated from two individual amounts of 
each sample and determinations were all done in triplicate (n = 7). The values of both 
average recovery determination of paracetamol and a relative standard deviation indi-
cate that reasonable accuracy as well as recovery value is within the state range ±5% 
(Ph EUR 97). Thus, the described method can be recommended in the case of high 
dosage drugs (even in the presence of exscipients and other active ingredients).  
 
Conclusion 
The proposed method for the determination of paracetamol is simple, fast, accurate 
and precise - the unknown concentrations of paracetamol can be determined from the 
standard series calibration curve within the accuracy of ± 5 %, and the detection limit 
is c = 5.8 × 10-8 mol dm-3. At the same time, the required amount of the sample for a 
complete analysis may be as small as 20 µL. The method was successfully applied to 
the determination of paracetamol in analgestic formulations. 
 
 
Table 1. Precision and recovery of paracetamol in pharmaceutical dosage form 

Pharmaceutical  
formulation  

Concentration 
(mol dm-3) 

Found ± SD 
(mol dm-3) 

RSD 
(%) 

Recovery 
(%) 

5.95×10-6 (6.03±0.19) ×10-6 3.3 101.3 Febricet (tablets) 
1.19×10-5 (1.21±0.04) ×10-5 3.3 101.9 

5.94×10-6 (5.87±0.22) ×10-6 3.9 98.8 Paracetamol (syrup) 1.78×10-5 (1.77±0.05) ×10-5 3.0 99.4 

3.57×10-6 (3.59±0.16) ×10-6 4.5 100.5 Efferalgan (syrup) 7.14×10-6 (7.24±0.34) ×10-6 4.7 101.4 

6.61×10-6 (6.88±0.29) ×10-6 4.3 104.1 Fervex (granulated 
units) 1.49×10-5 (1.54±0.06) ×10-5 4.0 103.3 
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Abstract 
A realistic 1D model of a bistable two-variable chemical system with a stable focus 
(SF) surrounded by a stable limit cycle (SLC) is investigated. Initial excitations of a 
subinterval of the system can generate two types of sustained wave sources depending 
on a value of the bifurcation parameter, which determines the basin of attraction of SF. 
For a sufficiently small basin of attraction of SF an initial local excitation of a finite 
system generates a finite sequence of traveling impulses. Each subsequent impulse is 
wider than the previous one. It is the reason why finite sequences of impulses can be 
observed in finite systems. In infinite systems, infinite number of impulses is gener-
ated. If the basin of attraction of SF is sufficiently large, another type of wave source 
is induced by an initial excitation. The wave source generates an infinite number of 
impulses both in finite systems as well as infinite ones. In this case traveling impulses 
have a local minimum between their front and back.  

 
Introduction 
Two kinds of explanations of the creation of target patterns observed in the Belousov-
Zhabotinsky reaction are known in literature. One of them is based on the assumption 
of existence some heterogeneities (pacemakers), where by the definition the system 
oscillates with higher frequency. The other explanation is based on the assumption that 
wave sources (leading centers) appear in a homogeneous medium due to fluctuations, 
which locally excite the system. The known models of leading centers consisted of at 
least three variables [1,2], whereas the models of pacemakers were based on two-
variable systems containing terms with explicit dependence on a space coordinate 
[2,3,4]. 
 A two-variable model of sources of waves in a one-dimensional (1D) system 
is presented below. Its dynamics is described by terms, which do not depend explicitly 
on the space coordinate. The idea of the model is based on the coexistence a stable 
steady state and a stable limit cycle above the subcritical Hopf bifurcation. 
 
Results and Discussion 
The model describes two coupled catalytic (enzymatic) reactions occurring in open 
system according to the following scheme: 
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The assumption that the total concentrations of catalysts (enzymes) are much lower 
than the concentrations of the reactant S and the product P allows us to identify con-
centrations of the both catalyst as well as their complexes as fast variables and elimi-
nate them in the slow time dynamics. 

We consider one-dimensional bounded system of the length L'. Neglecting the 
diffusion coefficients of the catalysts and all their complexes allows us to describe 
local changes of concentrations of S and P by two equations: 
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where s=S/Km, p=K5P are dimensionless concentrations of the reactant S and the prod-
uct P, Km=(k-2 + k3)/k2, K5=k5/k-5, t=k3E0/Kmt’ is the dimensionless time (t' is real time), 
E0 is the total concentration of the enzyme E, x=[k3E0 /(DSKm)]1/2x’ is the dimen-
sionless spatial coordinate (x' is the coordinate in a physical one-dimensional space) 
and D=DP/DS , where DS and DP are the diffusion coefficients of the reactant and the 
product, respectively. a1=k1S0/(k3E0), a2=k-1Km/(k3E0), a3=k4/k-4Km, b=KmK5, 
b1=k7E0’/(k3E0), b2=K’mK5  and K’m=(k-6 + k7)/k6. 

For appropriate values of the parameters, nullclines for s and p intersect at one 
point (stationary state) (s0,p0) located on the middle (repelling) branch of the N-shaped 
nullcline for s. The stationary state (the stable focus) becomes unstable at the critical 
value of the bifurcation parameter b=bcr due to the subcritical Hopf bifurcation. For 
b∈(bcr,bs) the stable focus (SF) coexists with a stable (SLC) and unstable (ULC) limit 
cycles. The bifurcation parameter b controls the positions of ULC and SLC. For b 
close to bcr, ULC is very close to SF, whereas SLC is far from SF. With increasing b 
ULC comes near to SLC. 

We consider the initial-boundary problem with the zero flux boundary condi-
tions: 
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and the following initial conditions: s(x,0)=s*, p(x,0)=p* for x ∈ [0,l*] and s(x,0)=s0, 
p(x,0)=p0 for x∈(l*,L], where s* and p* belong to the basin of attraction of SLC. 

If b is slightly greater than bcr, then the initial excitation causes the appearance 
of a sequence of traveling impulses. The width of each impulse decreases during its 
spreading and attains asymptotic size sufficiently far from the interval of the initial 
excitation (see Fig. 1). Each next impulse is initially wider than the previous impulse. 
Because the system is finite, the width of some new generated impulse becomes larger 
than L. The back of the impulse is not formed and finally the system oscillates homo-
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geneously with the period characteristic for SLC. Therefore, in a finite system one can 
observe the generation of a finite sequence of impulses only. 

 

 
Figure 1. Concentrations of the reactant for a1=a2=0.005, a3=250, b1=0.0026, b=0.24, 
s*=0.01, p*=p0, l*=0.015 at the following times: 23000 - (a); 45000 - (b); 66500 - (c); 
and 1706500 - (d). 
 

For larger values of b the initial excitation induces the generation of traveling 
impulses shown in Fig. 2. The impulse of s(x,t) has a small local minimum between 
the front and the back, whereas the impulse of p(x,t) has a corresponding small maxi-
mum. The back of the impulse is partially positioned inside ULC, where its evolution 
is governed by the vector field around SF. This part of the trajectory forms a bend, 
which in further evolution forms a loop. It follows from our numerical calculations 
that the period of oscillations observed at points, where the traveling impulses have 
their asymptotic forms, is slightly greater than that for homogeneous oscillations and 
does not depend on the initial conditions. 

 

 
Figure 2. Concentrations of the reactant for b=0.4 and l*=0.01 at the following times: 
102000 - (a); 105000 - (b); 108000 - (c) and 114000 - (d). The remaining parameters 
are the same as in Fig. 1. 
 

For values of b near bs, where ULC is close to SLC, for a sufficiently small 
width of excitation l* only single impulse is generated and then the distributions of the 
reagents return to their stationary values. However, sequences composed of subse-
quent numbers of impulses (see Fig. 3) appear for greater values of l*. 

 

 
Figure 3. Concentrations of the reactant for b=0.41 and l*=0.09 at the following 
times: 44000 - (a); 64000 - (b); 80000 - (c) and 116000 - (d). The remaining parame-
ters are the same as in Fig. 1. 
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Conclusions 
The types of sustained waves sources described above can be observed in all chemical 
systems in which ULC and SLC surround SF. There are known real chemical systems 
like the chlorite-iodide oscillator [5] and the peroxidase-oxidase reaction [6], in which 
the coexistence of the stable stationary state surrounded by SLC has been observed. It 
should be stressed that the wave sources described in this work have different proper-
ties from the target patterns observed in experiments  (B-Z reaction, and the others) as 
well as in the models known so far. In particular, they have nearly the same frequency 
of impulses generation as the frequency of stable limit cycle oscillations. 
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PREDICTION OF PROPERTIES IN MICROEMULSION:  
MOLECULAR THEORY 

S.N. Blagojević, M. Ilić 
Institute of General and Physical Chemistry, POB 551, Belgrade, SCG 

 
Abstract 
Microstructural features including the droplet radius, the thickness of the surfactant 
layer at the interface, the number of molecules of various species in a droplet, the size 
and composition dispersions of the droplets, and the distribution of the surfactant, oil 
and water molecules is microemulsion system are calculated. 
 
Introduction 
In quaternary systems of water/surfactant/co-surfactant/oil in the oil rich region, a 
thermodynamically stable emulsion, a so-called "microemulsion" is formed. Based on 
a small droplet size of the inner phase, the mixture is optically isotropic, transparent, 
but strongly light scattering. The first known system consisted of water/K-
oleate/hexanol/benzene. On addition of increasing amount of a short-chain alcohol 
(co-surfactant) to a milky emulsion of benzene and aqueous K-oleate, a stable, trans-
parent solution is formed. Microemulsions have been defined as a mixture of water 
and oil in similar portions which are spontaneously transformed into transparent and 
stable solutions by the presence of large amounts of surfactants and co-surfactants. 
Normally the co-surfactants are a short-chain alcohol with 4 to 8 carbon atoms. The 
distinction between microemulsions, micellar and inverse micellar emulsion is diffi-
cult, determination of properties with the aid of conductivity measurements, rheologi-
cal properties, x-ray diffraction, ultracentrifugation, and dynamic light scattering. 
A rich variety of theories have been used to explain microemulsion phase behavior. 
The influence of variables such as salinity, temperature and solvent type can be de-
scribed qualitatively in terms of binary phase diagrams of the components of the mi-
croemulsion. In contrast, quantitative theories are required in order to calculate phase 
diagrams and the size of microemulsion droplets. Lattice model [1] [2], have been de-
veloped in which each molecule is treated as a difunctional "dumbbell" oriented so 
that hydrophilic and hydrophobic ends form separate regions on the lattice. A Flory-
Huggins solution model [3] may be used to reproduce a wide variety of types of mi-
croemulsions phase diagrams by regressing interaction parameters, which depend 
upon surfactant concentration. Another quite different approach is based on the tessel-
lation of space by Veronoi cells to describe the onset of percolation [4]. For systems 
composed of bicontionous structures, this model is very useful for treating critical 
fluctuations. These models do not however account explicitly for the presence of the 
interface and it consequence [5]. 
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Results and Discussion 
Calculations were carried out for a system consisting of the anionic surfactant sodium 
laureth sulfate, decyl glycoside (co-surfactant), oil phase (Santalum Album, Vetiveria 
Zizanoides, essential oils from Sandal and Vetiver wood) and water containing 0.2M 
NaCl and citrate buffer (pH 5.5). In all calculations we assumed the coexistence of an 
excess dispersed phase. This means that the droplet microemulsion phase is part of a 
two-phase system and that the amount of dispersed phase present in the droplet is a 
maximum achievable. 
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Figure 1. Predicted radii of microemulsion droplets as a function of the volume 
ratios  

 
The number of surfactant molecules in the interfacial layer (Nil), thickenesses of the 
interfacial layers (Ft) and volume fractions (Vf) of oil and water for different surfac-
tant/co-surfactant volume ratios (from 1 to 6) are summarized in table 1. 
 
Table 1. Properties of microemulsion 

 Nil Ft (Å) Vf oil Vf water

1 580 12.8 0.04 0.96 
2 45600 12.1 0.28 0.72 
3 23400 11.9 0.85 0.15 
4 3480 11.7 0.95 0.05 
5 980 11.5 0.96 0.04 
6 780 11.1 0.98 0.02 

 
As a the most important properties of microemulsion, oil-water interfacial tension 
(dyne/cm) at the flat surfaces between microemulsion phases and excess dispersed 
phases as a function of the surfactant/co/surfactant volume ratios are described in fig-
ure 2. 
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Figure 2. Oil-water interfacial tensions as a function of surfactant/co-surfactant 
volume ratio 

 
In developing a molecular treatment for microemulsion it must be take into account 
the chain packing, which depends on the curvature of the aggregates, the self-
association of surfactant and co-surfactant in oil, the penetration of the interfacial layer 
region of the microemulsion by the oil molecules, their effects on chain packing and 
interfacial energies, and the hard core interaction among the droplets. 
 
Conclusion 
In this paper, a predictive molecular thermodynamic approach is developed to calcu-
late the structural and compositional characteristic of microemulsions. Illustrative nu-
merical results are provided for one anionic surfactant /co-surfactant /oil phase/ water 
system. The model allows the identification from two-phase to a three-phase system, 
and calculation of the interfacial tension between the microemulsion and the coexist-
ing phase. 
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PREDICTION OF PROPERTIES IN MICROEMULSION:  
THE LATTICE FLUID SELF-CONSISTENT FIELD THEORY 

S. N. Blagojević, N. Potkonjak 
Institute of General and Physical Chemistry, POB 551, Belgrade, SCG 

 
Abstract 
A lattice fluid self-consistent field theory is used to calculate both the composition and 
interfacial tension (γ) and bending moment (c) of spherical interfaces between oil and 
water.  
 
Introduction 
A microemulsion is transparent thermodynamically stable mixture of oil, water and 
one or more amphiphiles which are adsorbed on the interface. Two fundamental inter-
facial properties, the interfacial tension and bending moment, must be known in order 
to predict the droplet size, stability and phase behavior of microemulsion. Equilibrium 
is attained when a balance is struck between the interfacial energy and the energy due 
to dispersion of the micelle [1]. There have been few attempts to calculate the interfa-
cial tension and bending moment with molecular theories based on statistical mechan-
ics, as a function of the molecular architecture of the oil and surfactants [2,3]. A uni-
fied classical and molecular thermodynamic theory of microemulsion has been pro-
posed [4], for dilute polymer solution and it was used to determine the segment distri-
bution function of surfactant tails on a spherical interface. This distribution function 
was calculated form the diffusion equation for a single chain, neglecting interaction 
between chains and solvent. From the distribution function, the interfacial tension and 
bending moment were determined in order to calculate the droplet size and phase be-
havior. The self-consistent theory (SCF) developed by Scheutjens and Fleer [5,6] is a 
powerful theory for describing an interface, because it provides a detailed representa-
tion of interfacial composition. Once the equilibrium distributions of components are 
known in each layer of interface, the free energy of the system may be calculated. The 
theory was first used to treat the adsorption of homopolymers in solution onto flat sur-
faces and the interaction strength between these surfaces. In the above SCF theories, 
the lattice is incompressible and the density is constant in each layer of the interface 
and the bulk. Compressibility has been included by combining the SCF theory with 
the lattice fluid theory for homopolymers in contact with a vacuum. There are number 
of practical application for this type of molecular model. For example, solubilization 
in water swollen reverse micelles depends upon the partition coefficient of the solute 
between the bulk water core and interface. This partition coefficient may be calculated 
by integrating the interfacial bonding moment over the micelle radius [7]. The lattice 
fluid SCF theory offers a means to determine the bending moment at the molecular 
level. In the case of liquid crystals, the bending moment, interfacial tension and inter-
facial interaction strength are required to determine the morphology [8]. 
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Results and Discussion 
We use as a basis the thermodynamics of a Gibbs dividing surface. The surface excess 
free energy (Fs) is calculated by subtracting the free energy of the system without the 
interface from the free energy of the system with the interface. 
 

dFs = γ dS +Sc d(2/R) +Σ µi dni
s + Ss dT 

 
where µi is a chemical potential of component i at constant R (radius od droplet core), 
S and Ss is the surface excess entropy, ni

s is the excess number of molecules of type i 
in the interface, γ is interfacial tension and c is the bending moment of the interface. 
An important advantage of the lattice fluid SCF theory, compared with earlier theories 
of microemulsions is the ability to calculate composition throughout the interface. In 
SCF theory the distribution function of polymer conformation is taken into account 
explicitly. The statistical weight of each conformation can be calculated by performing 
a step-weighted walk in the lattice. When the lattice is spherical the number of sites in 
each layer z is a function of the distance from the center of the sphere as follows: 
 

L(z) = 4/3 π [(z + R/δ)3 - (z-1+R/δ)3] 
 

where R is radius of the droplet core and δ is a thickness of a lattice layer. For calcu-
lated case four components are in the lattice: surfactant tail, solvent, oil and holes. 
Calculations were carried out for a system consisting of the anionic surfactant MIPA-
laureth sulfate, laureth-4 (co-surfactant), oil phase (glicine-soja oil) and water contain-
ing citrate buffer (pH 5.5). 
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Figure 1.  Bending moment as a function of radius at different surfactant/co-
surfactant  mass ratio (1-1, 2-1.5, 3-3, 4-3.5) 
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Figure 2. Interfacial tension as a function of radius at different surfactant/co-

surfactant  mass ratio (1-1, 2-1.5, 3-3, 4-3.5) 
 
 
Conclusion 
The lattice fluid SCF theory offers a means to calculate fundamental interfacial prop-
erties of microemulsions. For investigated system the prediction of interfacial thick-
ness is in an agreement with experimental results. For very small droplet radii, the 
bending moment of the interface is large and positive, indicating that the interface is 
highly stressed. The interfacial tension is sensitive to the droplet radius. As the droplet 
radius approaches the natural radius, the bending moment decreases to zero and the 
interfacial tension becomes less sensitive to the radius. 
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PREDICTION OF PROPERTIES IN MICROEMULSION: 
STATISTICAL MECHANICS OF MICROEMULSION 

S. N. Blagojević 
Institute of General and Physical Chemistry, POB 551, Belgrade, SCG 

 
Abstract 
We discuss the statistical mechanics of the droplet microemulsion within the context 
of the model of configurational partition function. 
 
Introduction 
Microemulsions are thermodynamically stable mixtures of oil, water and surfactants. 
The stability of such mixtures is the result of a microstructure in which microdomains 
of oil and water, with characteristic dimensions of ten to hundreds of angstroms, are 
separated by monolayer films of surfactants. Such systems are found to adopt a variety 
of geometrical structures for the microdomains, including ordered lammellar phases 
containing alternating layers of oil and water, phases containing droplets of one fluid 
dispersed in a continuum of the other and bicontunous spongelike structures. Such 
structures may occur either as single phases or in large parts of the phase diagram in 
two or three-phase coexistence regions. One very successful approach to understand-
ing the behavior of microemulsion has been to describe such systems as ensambles of 
interfacial surfaces with conformation controlled by a simple interfacial bending free 
energy of the form proposed by Canham [1] and Helfrich [2]. In this model, the elas-
ticity of the interfacial films is characterized by three elastic parameters: a mean rigid-
ity, a Gaussian (or saddle-splay) rigidity and a spontaneous curvature.  
In statistical mechanics the Gibbs free energy (G) is related to the configurational par-
tition function Z in the pressure ensemble by: 
 

G = -kT ln Z (T,P) 
 

Z (T,P) = ΣV ΣE Ω (E,V,N) exp [-β(E+PV)] 
 

where Ω (E,V,N) is the number of configurations available to a system of N molecules 
whose configurational (potential) energy and volume are E and V. The summation 
extends over all values of E and V. In the ensamble of systems under consideration, 
the temperature T (β=1/kT) and pressure are fixed. The Gibbs potential and the associ-
ated pressure ensemble are the most convenient of the potential ensembles to utilize in 
the study of fluid phase equilibria. The properties derived from the pressure ensemble 
in the thermodynamic limit are identical with those of the more commonly used ca-
nonical and grand canonical ensemble [3].  
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Results and Discussion 
The fundamental problem is to determine Ω. Solution of the problem is very difficult 
even when a lattice is used to enumerate configurations. In the lattice formulation, the 
problem is to determine the number of configurations available to a system of N mole-
cules each of which occupies r sites (a r-mer) and No vacant lattice sites (holes).  Ap-
proximate value of Ω for a multicomponent mixture of r-mers in a lattice, can be cal-
culated in a mean field approximation: 
- the total number of lattice sites for a binary mixture of N r-mers and N0 empty 

sites is Nr=N0+rN 
- the coordination number of the lattice is z. Each interior mer of a linear chain is 

surrounded by z-2 nearest nonbonded neighbors and two bonded neighbors, mers 
at the chain ends have z-1 nearest nonbonded neighbors and one bonded 
neighbor. Thus, each r-mer is surrounded by qz nearest nonbonded neighbors 
where qz = r(z-2) + 2 

- The total number of nearest neighbor pairs in the system is (z/2) Nr. Only (z/2)Nq 
are nonbonded pairs where Nq = No+qN.  

- An r-mer is characterized by a symmetry number σ. For example, for a linear r-
mer it is equal to two if the chain ends are indistinguishable and to unity if the 
chain ands are distinguishable.  

- An r-mer is also characterized by a flexibility parameter δ. It is equal to the num-
ber of ways in which the r-mer can be arranged on the lattice after one of its mers 
has been fixed on a lattice site. It is a measure of the r-mer internal degrees of 
freedom.  

The number of configurations available to a system of N r-mers and No empty sites is 
 

Ω = (δ/σ)N {Nr!/(No!N!)} (Nq!/Nr!)z /2

 
Using Sterlings approximation (n! ≈ (n/e)n) for a large z (z→∞), Ω can be expressed: 
 

lim Ω = (1/fo)N
0 (ω/f)N   {ω = δr/σer-1, fo = No/Nr, f = rN/Nr} 

 
This approximation is known as the "Flory approximation". With two more assump-
tions: that the flexibility parameter δ is independent of temperature and pressure and 
that close packed volume of molecule is independent of temperature and pressure. The 
energy of lattice depends only on nearest neighbor interaction, so the attractive lattice 
energy can be written as 
 

E = - (z/2) Nr Σi Σj p(i,j) εij
 

where εij is the pair interaction energy between components i and j and p(i,j) is the pair 
(joint) probability of an (i,j) pair in the system. In this case it is "holes" and "mers".  
Since E and Ω are functions of a single parameter, the number of holes in the lattice, 
the double sum over E and V required in the evaluation of the partition function can be 
replaced by a single sum over No: 
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Z (T,P) = ΣNo Ω exp [-β(E + PV)] 

 
In statistical mechanics the standard procedure is to approximate to above sum by its 
maximum term, the maximum term is overwhelmingly larger than any other for mac-
roscopic system. This is equivalent to equating the free energy to the logarithm of the 
generic term in the partition function and then finding minimum value of the free en-
ergy:  
 

G = E + PV - kT lnΩ 
 

For a purposes of calculation it is most convinient to work in a grand-canonical en-
semble in which an interface of a variable area A fluctuates about a reference plane of 
fixed area Ap. The average value of A is controled in this ensemble by a chemical po-
tential conjugate to A, where the value of chemical potential is equal to that in the co-
existing microemulsion phase. The macroscopic interfacial tension measured by a 
spinning drop or surface scattering experiment is given by the change of Ω of the in-
terface per unit change in the projected area Ap of the interface at the fixed value of 
chemical potential. The derivate ∂Ω/∂Ap is equivalent to the corresponding derivate of 
the total Helmholtz free energy of a system comprised of the interface with coexisting 
microemulsion phase.  
Calculations of surface tension (mN/m) (20C) were done for water/oil/surfactants 
(W/O/S) system as follows for Na-lauril-ether-sulphate (0.1%) and olive oil (55%):  
 

 Water Water/surfactant W/O/S 
Calculated 71.5 34.2 38.3 
Measured 72.8 33.1 38.5 

 
Conclusion 
We have analysed the effects of approximation in determining Ω in microemulsion 
system. The surface tension was calculated and these calculations are very close to 
measured values by tensidometry. 
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HPTCu REACTION SYSTEM IN TWO MASS–COUPLED 
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Abstract 
Oscillating reactions with an autocatalytic effect involving protons are called pH-
oscillators. Here we focus on the reaction between hydrogen peroxide and 
thiosulfate catalyzed by Cu2+ in the solution of H2SO4 (HPTCu). In a single 
continuous-flow stirred tank reactor, this reaction provides nonlinear dynamical 
behavior including different types of steady states, spontaneous oscillations, 
bistability between steady states or between a steady state and oscillations, and 
hysteretic loops. In addition, there exist conditions under which the system is 
excitable. When two reaction cells are coupled by diffusion-like mass transfer 
dynamical behavior becomes very complex. We present results of numerical 
simulations of dynamics in two coupled flow-through stirred reactors (CSTR). 
 
Introduction 
Following earlier studies in single-CSTR arrangement [1,2] we examined all 
nonlinear features experimentally by varying the flow rate and inflow 
concentration of the reactants. Also, we applied perturbations at a particular 
dynamical mode and studied the system’s response to single-pulse or periodic 
pulsed perturbations [3]. The observed phenomena were compared with the 
mechanism of the system taken from [1]. Even though this mechanism was found 
to account for many of the observed dynamical phenomena, some features are 
inconsistent with experiments and further refinements are needed. 

In future experimental work we will focus on two mass-coupled CSTRs. 
As a preliminary study here we use the original mechanism to predict dynamics in 
a coupled system with a focus on transfer of signals from one reactor to the other 
when both CSTRs are oscillating. Nonidentical coupled reactors provide complex 
multiple steady states including isolas, and also compound oscillations with 
amplitudes depending on the coupling strength.  
 
Dynamical Behavior of the Reaction 
The mechanism is quite involved [1] and bifurcations leading to complex dynamics 
can be expected when external constraints are varied. These constraints are the 
inflow reactant concentrations, the flow rate, temperature in the reactor as well as 
the intensity of stirring. Variation of the system’s dynamics as the constraints are 
varied was experimentally examined by Orbán and Epstein [2]. They found that pH 
of the system corresponds to one of the following four states: 
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• Steady state I (SSI)   – pH ~ 7-9 
• Steady state II (SSII)  – pH ~ 5 
• Steady state III (SSIII) – pH ~ 3,5 
• Oscillations 

 
The steady states may coexist and the system will operate at one of the alternative 
attractors depending on its history and, in addition, there is a parameter region, 
where the system is excitable with respect to pulsed addition of certain chemical 
species. 
 
Model 
To simulate dynamics of two coupled CSTRs with mutual mass transfer, we use 
the mass balance equations with diffusion-like coupling terms. By using an 
assumption of ideal mixing and mechanism elaborated by Kurin-Csörgei et al. [1], 
we obtain the following equations: 

 

( ) (1
01 01 1 2 1

1

i
i i j i i

i

dc k c c r ka c c
dt

= − + ∑ + − )  

( ) (2
02 02 2 1 2

2

i
i i j i i

i

dc k c c r ka c c
dt

= − + ∑ + − )  

 
where 
ci1; ci2…the concentration of species i in the first (second) reactor, 
ci01; ci02…the concentration of species i in the inlet to first (second) reactor, 

1i
∑ rj; r

2i
∑ j …overall reaction rates for species i in the first (second) reactor, 

k01; k02…reciprocal residence time (=flow rate) in the first (second) reactor, 
k…mass transfer coefficient 
a… specific area 
 
Results 
We focused on the region of oscillation and studied how the oscillations in the first 
reactor can affect the oscillations in the other reactor. We calculated the time series 
for various values of parameters corresponding to selected dynamics. As expected, 
we found that the connection causes synchronous oscillations in both reactors in 
most of the parameter region of oscillations. But there are narrow sub-regions, 
where the behavior becomes more complex. These results show oscillatory 
dynamics for gradually increasing values of the reciprocal residence time k0. For 
weak coupling the oscillatory amplitudes in both reactors differ substantially. As 
the coupling strength is increased, the frequency of oscillations in the first reactor 
is decreased until oscillations disappear. Finally, for large enough coupling the 
oscillations become fully synchronized.  
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The calculated results are summarized in the form of diagrams where the 
dependence of a firing number on the coupling strength ka is shown for three 
different flow rates k0 (Figs. 1-3). The firing number νo is defined as a ratio of the 
number of oscillations in the first reactor to the number of oscillations in the 
second reactor. Such plots are called devil’s staircase. 
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Figure 1. – Devil’s staircase 
diagram; [H2O2]01 = [H2O2]02 = 
0.1 M; [S2O3

2-]01 = 0.005 M, 
[S2O3

2-]02 = 0.008 M; [Cu2+]01 = 
[Cu2+]01 = 2.5 x 10-5 M; 
[H2SO4]01 = [H2SO4]02 = 0.001 
M; k0 = 0.0014 s-1
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Figure 2. – Devil’s staircase 
diagram; [H2O2]01 = [H2O2]02 = 
0.1 M; [S2O3

2-]01 = 0.005 M, 
[S2O3

2-]02 = 0.008 M; [Cu2+]01 = 
[Cu2+]01 = 2.5 x 10-5 M; 
[H2SO4]01 = [H2SO4]02 = 0.001 
M; k0 = 0.0015 s-1
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Figure 3. – Devil’s staircase 
diagram; [H2O2]01 = [H2O2]02 = 
0.1 M; [S2O3

2-]01 = 0.005 M, 
[S2O3

2-]02 = 0.008 M; [Cu2+]01 = 
[Cu2+]01 = 2.5 x 10-5 M; 
[H2SO4]01 = [H2SO4]02 = 0.001 
M; k0 = 0.0016 s-1

Discussion and Conclusions 
 
Due to its complex mechanism, the H2O2-S2O3

2--H2SO4-Cu2+ system displays a rich 
variety of dynamical regimes including multiple steady states and periodic 
oscillations in a single CSTR. By coupling two nonidentical reactors, this system 
provides more complex behavior than a single reactor. With the knowledge of the 
behavior of the system in a single reactor, the set of parameters corresponding to 
autonomous oscillations was chosen and we observed how the strength of mutual 
coupling changes the patterns of spontaneous oscillations. We found conditions, 
where the oscillations are not only fully synchronized, but they stabilize in a 
compound dynamical regime characterized by certain ratio of frequencies. In the 
future work we intend to compare this numerical study to experiments in a mass-
coupled cell system, which represents a simplified model of biochemical and 
biological pH sensitive systems. 
  

4-Cu2+ system displays a rich 
variety of dynamical regimes including multiple steady states and periodic 
oscillations in a single CSTR. By coupling two nonidentical reactors, this system 
provides more complex behavior than a single reactor. With the knowledge of the 
behavior of the system in a single reactor, the set of parameters corresponding to 
autonomous oscillations was chosen and we observed how the strength of mutual 
coupling changes the patterns of spontaneous oscillations. We found conditions, 
where the oscillations are not only fully synchronized, but they stabilize in a 
compound dynamical regime characterized by certain ratio of frequencies. In the 
future work we intend to compare this numerical study to experiments in a mass-
coupled cell system, which represents a simplified model of biochemical and 
biological pH sensitive systems. 
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Abstracts  

Using the Density Functional Theory (DFT) method and LanL2DZ basis set, 
we analyzed the activation energies and rate constants of hydrogen peroxide decompo-
sition in the presence of HOI, IOI and HOIO, in the gaseous phase. 

 
Introduction 
 Ab initio study of hydrogen peroxide decomposition in gaseous phase is 
given in ref [1]. For these calculations the CASPT2//CASSCF method is used. The 
corresponding analysis of hydrogen peroxide decomposition in the presence of HOI, 
IOI and HOIO can not be found in literature. For mentioned reactions only enthalpies 
and Gibbs free energies are already calculated. [2,3] The aim of present paper is to 
evaluate the activation energies of hydrogen peroxide decomposition in reactions in-
volving different oxy-iodine species ( HOI, IOI and HOIO). These reactions are the 
essential for understanding the course of Bray-Liebhafsky reaction system. 
 
Results and Discussion 

The bond lengths, vibrational frequencies and energies for the oxy-iodine and 
hydrogen-oxy-iodine species are investigated using density functional theory at the 
level of Gill96 exchange and Perdew-Wang91 correlation functional (G96PW91). The 
double-zeta valence basis sets augmented with p and d, diffuse and polarization func-
tions are used for oxygen. The double-zeta valence basis set combined with the rela-
tivistic effective core potential of Wadt and Hay and augmented with uncontracted 
diffuse s and p functions (exponents 0.0569 and 0.0330, respectively), and d and f po-
larization functions (exponents 0.292 and 0.441, respectively) are used for iodine. The 
6-311++G(3df,3pd) basis set are used for hydrogen. Geometries for transition state are 
identified by maximisation of energy with respect to all geometrical parameters. Vi-
brational frequencies are calculated for all obtained structures in order to show 
whether structures are real minima, maximum (hessian has only one imaginary fre-
quency) or higher order saddle point on the respective potential energy surface. In ad-
dition we performed intrinsic reaction coordinate (IRC) calculations to additionally 
prove that the founded structure is real transition state (Figure 1).     
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All quantum chemical calculations are performed by means of the Gaussian 
98 program package, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998, under Win-
dows 2000 operating system.  

With aim to test  the method that we intend to use for further calculations, we 
first analyzed the activation energies for hydrogen peroxide decomposition in gaseous 
phase calculated by Ab initio CASPT2//CASSCF method  [1]. The results obtained 
by the DFT method and LanL2DZ basis set of 204.5 kJ/mol (Table 1., reaction 
R1) are in a good accordance with the published ones, 201.1 kJ/mol.  

 
Table I. Calculated activation energies for gaseous reactions at 298 K.  

 

Reactions ∆Ea
(kJ mol-1) 

R1 HOOH  HOH + O 204.5

R2 HOI + HOOH  HOH + HOIO 103.4

R3 IOI + HOOH  HOH + IOIO 126.5

R4 HOIO + HOOH  HOH + HIO3 96.8
 

The activation energies of the hydrogen peroxide decomposition in gaseous 
phase in the presence of HOI, IOI and HOIO, and the one without any iodine species, 
are obtained and listed in Table I. It has been found that the reactions R2, R3 and R4 
are thermodynamically possible in the considered system because they have ∆rG < 0 
[2,3]. The obtained activation energies are significantly lower than the activation en-
ergy of hydrogen peroxide decomposition, alone (reaction R1). Therefore, the pres-
ence of oxy-iodine species catalyzes the decomposition of hydrogen peroxide in ac-
cordance with experimental data.   
  The structures of transition complex for reactions R1-R4 are presented in 
Figure 1. The structures of transition complex for reactions R2-R4 are similar. The 
characteristic of transition structure in all of three reactions are the same breaking and 
forming bonds. In reaction R1 we have only breaking of one O-O bond while in reac-
tion R2-R4 we have additional forming of one I-O bond. The different bond length for 
breaking and forming bonds in transition complex cause the difference of activation 
energy for reaction R2-R4.          
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Figure 1. The molecular structure in transition state for considered reactions. Bond 
lengths are in 10-10 m, the arrows indicate the vibration direction. The dashed lines 
correspond to breaking and forming bonds, the once which are the most changed 

during course of reactions. 
 
In Figure 2, the profile of the minimum energy path for reaction R1 from IRC 

calculations is given as an example. 
 

Conclusion 
The results for hydrogen peroxide decomposition in gaseous phase obtained 

by the DFT method and LanL2DZ basis set are in a good accordance with the pub-
lished ones [1] obtained by Ab initio CASPT2//CASSCF.   

Analyzing the calculated activation energies, we can conclude that all three 
considered reactions are possible. Their activation energies are lower than the activa-
tion energy of hydrogen peroxide decomposition, alone.  

The obtained results for hydrogen peroxide decomposition in gaseous phase 
can be used as the starting point for the analysis of the same reactions in solution. [4] 
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Figure 2. Minimum energy path for reaction R1 from IRC calculations. The mole-
cule structure which corresponds to transition state is shown. 
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